

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electrical and Electronics Engineering

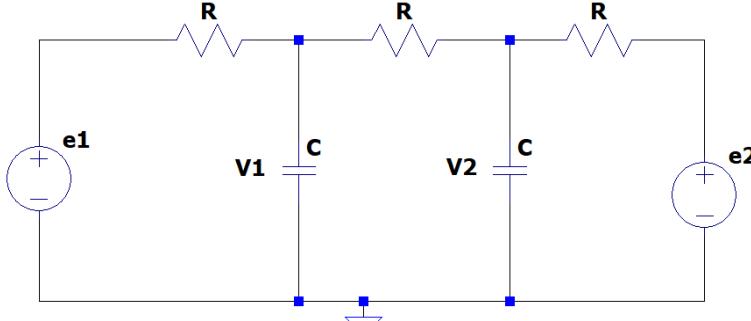
Duration: 3 hrs.

Course Code: 23EE5PCMCT

Max Marks: 100

Course: Modern Control Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the concept of state, state variable and state model of a linear system.	CO1	PO1	06
	b)	Obtain the state model of the electrical network using minimal number of state variables. select the current through e_2 as output.	CO2	PO2	08
					
Fig.1(b)					
	c)	Obtain the state model by foster form of a system whose transfer function is $T(s) = \frac{(s^2+4)}{(s+1)(s+2)(s+3)}$	CO2	PO2	06
OR					
2	a)	Using Taylor series, linearize the state equation $\dot{X}(t) = f(x, U)$ for small deviations about the equilibrium point (X_0, U_0) . Neglect second and higher order terms.	CO1	PO1	06
	b)	Determine the canonical state model of the system whose transfer function is $T(s) = \frac{s^3+3s^2+2s}{s^3+12s^2+47s+60}$	CO2	PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	For the transfer function $\frac{Y(s)}{R(s)} = \frac{s^3+5s^2+s}{s^3+6s^2+9s+4}$, obtain the state model in Jordan canonical form.	CO2	PO2	06
		UNIT - II			
3	a)	What are generalized eigen vector? How are they determined?	CO1	PO1	04
	b)	Find state transition matrix by Caley-Hamilton theorem for the following matrix $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$	CO2	PO2	06
	c)	Obtain the time response of the following vector matrix differential matrix. $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $y = [1 \ 0] \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$ Where $u(t)$ is a unit step input and the initial conditions are $X_1(0)=X_2(0)=0$.	CO2	PO2	10
		OR			
4	a)	What is state transition matrix? List the properties of state transition matrix.	CO1	PO1	04
	b)	Obtain the transfer function of the following system described by the following state equation. $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$ $Y = [1 \ 1 \ 0] \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$	CO2	PO2	06
	c)	Find the transformation matric 'M' that transforms the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ into diagonal or Jordan form. Also prove that transformation $M^{-1}AM$ results in diagonal matrix.	CO2	PO2	10
		UNIT - III			
5	a)	Define state controllability. Also explain and prove the Kalman's test for determining state controllability.	CO1	PO1	05
	b)	Explain the principle of duality between controllability and observability.	CO1	PO1	05
	c)	Determine the state controllability of the system by Kalman's approach and verify by Gilbert's approach.	CO3	PO2	10

		$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$			
		OR			
6	a)	Define and explain state observability. Also Derive the Kalman's and Gilbert's test for determining state observability.	CO1	PO1	10
	b)	A system represented by the following state model is controllable but not observable. Show that the non-observability is due to a pole-zero cancellation in $C[SI-A]^{-1}B$ $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$ $Y = [1 \ 1 \ 0] X$	CO3	PO2	10
		UNIT - IV			
7	a)	What are the different methods of evaluating state feedback gain matrix? Explain any one method in detail	CO4	PO3.4	08
	b)	Consider the system defined by $\dot{X} = AX + BU$ $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ By using state feedback control $u = -kx$, it is desired to have the closed loop poles at $s = -2 \pm j4$, $s = -10$. Determine the state feedback gain matrix k by using i) Direct substitution method ii) Transformation matrix T .	CO4	PO3.4	12
		OR			
8	a)	Obtain the necessary and sufficient condition for arbitrary pole placement.	CO4	PO3.4	08
	b)	Consider the system $\dot{X} = AX + BU$. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $C = [1 \ 0 \ 0]$. Determine the observer gain matrix by the use of i) Direct substitution method ii) Ackermann's formula Assume that the desired eigen values of the observer gain matrix are $-2 \pm j3.4641$ and -5 .	CO12	PO3.4	12

			UNIT - V			
	9	a)	Explain the following behavior of non-linear system i) Frequency amplitude dependance ii) Multi-valued responses and jump resonance	CO1	PO1	10
		b)	Determine whether or not the following quadratic form is positive definite. $Q(x_1, x_2) = 10x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$	CO2	PO2	10
OR						
	10	a)	Explain phase trajectory construction by using i) Analytical method ii) Isocline's method	CO1	PO1	10
		b)	Find out singular points for the following systems. i) $\ddot{y} + 0.5y + 2\dot{y} = 0$ ii) $\ddot{y} + 3\dot{y} - 10 = 0$	CO2	PO2	10

B.M.S.C.E. - ODD SEM 2024/25