

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE5PCPE1

Course: Power Electronics - I

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT - I			<i>CO</i>	<i>PO</i>	Marks
	1	a)	Classify power semiconductor devices. List the devices that you would select for low, medium and high power applications.	<i>CO3</i>	<i>PO2</i>	08
		b)	Illustrate how i) AC to DC conversion ii) DC to AC conversion can be accomplished using power semiconductor devices having a control input terminal.	<i>CO3</i>	<i>PO2</i>	08
		c)	Compare any two ideal characteristics versus Practical characteristics of power semiconductor devices.	<i>CO3</i>	<i>PO2</i>	04
			UNIT - II			
	2	a)	Analytically obtain an expression for output current of a single phase diode bridge rectifier with R-L-E load and continuous current.	<i>CO2</i>	<i>PO3</i>	10
		b)	A single phase bridge rectifier is fed from 220 V AC mains. The load resistance is 12.4 ohm Determine i) Average output voltage. ii) Average output current. iii) RMS output current. iv) Conversion efficiency. v) Ripple factor.	<i>CO2</i>	<i>PO3</i>	10
			UNIT - III			
	3	a)	Explain the structure of a power BJT.	<i>CO1</i>	<i>PO1</i>	06
		b)	List the differences between depletion type and enhancement power MOSFETs	<i>CO1</i>	<i>PO1</i>	06
		c)	For the Transistor switch shown in Fig 3.c β of the transistor varies from 20 to 80. The load resistance $R_C = 10$ Ohm, the DC supply voltage $V_{CC} = 50$ V and the input voltage to the base circuit is $V_B = 5$ V. If $V_{CE\ (sat)} = 1.5$ V, $V_{BE\ (sat)} = 1.8$ V determine i) the value of R_B that will result in saturation with an overdrive factor of 22. ii) Forced β .	<i>CO4</i>	<i>PO2</i>	08

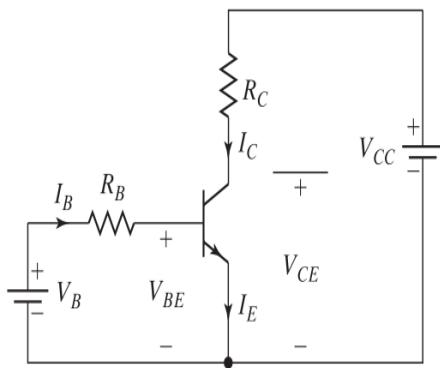


Fig 3.c

OR

- 4 a) With the help of neat diagrams explain the working of n-channel Enhancement type MOSFET.

CO1 PO1 **08**

- b) Sketch and explain the switching characteristics of a power BJT.

CO3 PO2 **07**

- c) Compare the properties of Power BJT and Power MOSFET.

CO3 PO2 **05**

UNIT - IV

- 5 a) Describe the structure and working of IGBT.

CO1 PO1 **07**

- b) For the circuit shown in Fig 5.b VCC = 350V, RC=4 Ω , Vd1 = 3.7 V, Vd2 = 0.8 V, VB = 16 V RB = 1.3 Ω and β = 13. Calculate i) the Collector current without clamping. ii) the Collector clamping voltage VCE. iii) the collector current with clamping.

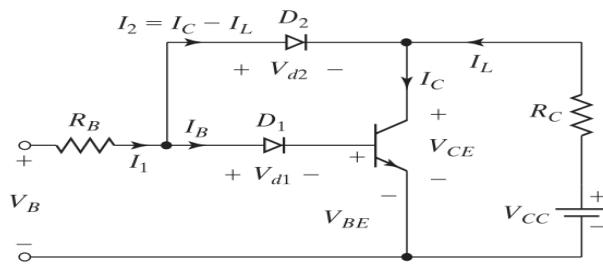


Fig 5.b

- c) Compare Power BJT and Power MOSFET.

CO3 PO2 **05**

OR

- 6 a) Illustrate with the help of a neat circuit diagram how fast turn on of MOSFET switch can be achieved with a R-C circuit.

CO4 PO2 **07**

- b) Sketch and Explain switching characteristics of IGBT and comment on the tail current.

CO3 PO2 **08**

- c) Illustrate the use of pulse transformers for isolation of BJT base drive.

CO4 PO2 **05**

UNIT - V

- 7 a) Explain the operation of a Thyristor using two transistor analogy.

CO1 PO1 **08**

- b) Illustrate with the help of a circuit diagram any one method of thyristor turn off.

CO4 PO2 **06**

- c) What is Electromagnetic Interference (EMI)? What are the sources of EMI in a power converter? How can EMI generation be minimized?

CO4 PO2 **06**
