

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Electrical & Electronics Engineering

Course Code: 19EE5PCPEN

Course: POWER ELECTRONICS

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 25.09.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Draw the block diagram representation showing the interrelationship of power electronics with power, electronics and control. Mention any four applications of power electronics. **06**

b) Explain with sketches the control characteristics of Thyristor, BJT and MOSFET. **09**

c) Explain with relevant circuit diagram and equations the MOSFET fast turn ON gate drive circuit. **05**

OR

2 a) The reverse recovery time of a power diode is $t_{rr} = 3\mu s$ and the rate of fall of the diode current is $di/dt = 30A/\mu s$. Determine (i) the storage charge Q_{RR} and (ii) the peak reverse current I_{RR} . **05**

b) Explain the operation of Thyristor with the help of sketches. Draw the V-I characteristics of the Thyristor. Define the terms Latching current and Holding current. **10**

c) Explain with neat circuit diagram, the Optocoupler gate isolation. **05**

UNIT - II

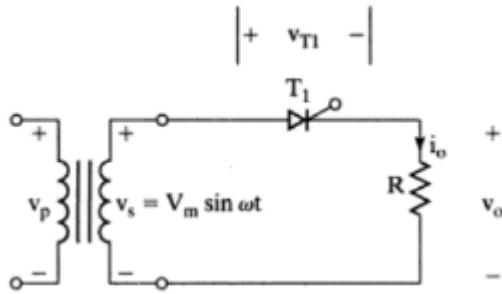
3 a) Classify the DC - DC converters based on the quadrant operation and briefly explain its operation with the help of circuit diagrams. **10**

b) With relevant circuit diagram, explain the principle of step down chopper operation with R load. Draw the waveforms for output voltage, current, effective input resistance versus duty cycle. Derive the expressions for the average and RMS values of output voltage. **10**

UNIT - III

4 a) Briefly explain the wide band gap materials SiC and GaN. **07**

b) Enumerate any three features, three benefits and one application of SiC MOSFETS. **07**


c) Give a brief comparison of SiC power module with Si-IGBT power module. **06**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV

5 a) With a neat circuit diagram, quadrant diagram and waveforms for output voltage, output current and source current, briefly explain the operation of a single phase full converter circuit with a highly inductive load. Derive the expressions for the average value of output voltage. 10

b) If the converter in Figure 1 has a purely resistive load of R and the delay angle $\alpha = \pi/2$, determine (i) the Rectification efficiency, (ii) the Form factor (FF), (iii) Ripple factor (RF), (iv) the peak inverse voltage (PIV) of the Thyristor T_1 . 10

Figure 1

OR

6 a) With a neat circuit diagram and waveforms for output voltage, Thyristor currents T_1 and T_4 , source current and output current, briefly explain the operation of a three phase full converter circuit with a highly inductive load. 10

b) Explain why power factor correction is necessary in rectifier circuits with a relevant example and its impact. 06

c) A three-phase controlled rectifier has an input voltage which is 480 V rms at 60 Hz. The load is modeled as a series resistance and inductance with $R=10\Omega$ and $L = 50 \text{ mH}$. (i) Determine the dc component of output voltage (ii) Determine the delay angle required to produce an average current of 50 A in the load. 04

UNIT - V

7 a) With neat circuit diagram and waveforms, explain the principle of operation of single phase full bridge inverter with a highly inductive load. Derive the expression for RMS value of output voltage. Write down the expressions for instantaneous output voltage and instantaneous load current for this RL load. 10

b) A three phase inverter has a star connected load of $R = 5\Omega$ and $L = 23\text{mH}$. The inverter frequency is 60 Hz and the dc input voltage is 220V. (i) Express the instantaneous line to line voltage $v_{ab}(t)$ and the line current $i_a(t)$ in Fourier series. Determine (ii) the RMS line voltage V_L ; (iii) the RMS phase voltage V_p ; (iv) the RMS line voltage V_{L1} at the fundamental frequency; (v) the RMS phase voltage V_{P1} at the fundamental frequency; 10
