

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE5PCPEN

Max Marks: 100

Course: Power Electronics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What is the importance of performance parameters of a diode rectifier? Enlist the performance parameters with their definitions and expressions.	CO2	PO1, PO 2	10
	b)	How is a power diode different from normal (signal) diode? Describe in terms of structure and characteristics. Draw and explain the reverse recovery characteristics of a power diode	CO1	PO2	10
OR					
2	a)	List the advantages of SiC as a material for power semiconductor device.	CO1	PO2	04
	b)	Obtain the expressions for peak recovery time and reverse recovery current of a power diode	CO2	PO1,P O2	06
	c)	Draw the circuit diagram and waveforms of a single-phase bridge rectifier that supplies a very high inductive load such as a dc motor. The load is such that the motor draws a ripple-free armature current of I_a . Derive the expression for I_a and determine (a) the HF of input current and (b) the input PF of the rectifier.	CO3	PO2	10
UNIT - II					
3	a)	Draw the structural diagrams of Enhancement type and depletion type MOSFETs. List the major differences between the two types.	CO1	PO2	10
	b)	With a neat cross-sectional diagram discuss the working of IGBT. Plot the static characteristics	CO1	PO2	10
OR					
4	a)	Which type of MOSFET is ideal for switching applications? Give reason	CO1	PO2	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	With switching models and waveforms, explain the switching characteristics of MOSFET	CO2	PO1,P O2	12
	c)	In a certain application, a power converter of rating 250W with a high efficiency is required. Which power device will you choose for this application if the switching frequency of the devices to be selected as 150kHz. Justify your answer.	CO2	PO1,P O2	04
		UNIT - III			
5	a)	Explain the construction and working of an SCR. Obtain an expression for anode current with the help of its two-transistor analogy.	CO1	PO2	10
	b)	With relevant circuit diagram and waveforms explain single full controlled converter for R-L load. Derive the expressions for average and rms output voltages and output current	CO3	PO2	10
		OR			
6	a)	With neat circuit diagram and waveform, analyse the working of a three phase full converter. Derive expressions for average and RMS output voltages	CO3	PO2	10
	b)	A single-phase full converter is fed from a 230V, 50Hz supply. The load is highly inductive. Find the average load voltage and load current if the load resistance is 10 ohm and firing angle is 45° . Draw the circuit diagram and sketch the output voltage waveform	CO4	PO3	10
		UNIT - IV			
7	a)	The buck regulator has an input voltage of $V_s = 12$ V. The required average output voltage is $V_a = 5$ V at $R = 500\Omega$ and the peak-to-peak output ripple voltage is 20 mV. The switching frequency is 25 kHz. If the peak-to-peak ripple current of inductor is limited to 0.8 A, determine (a) the duty cycle k , (b) the filter inductance L , (c) the filter capacitor C , and (d) the critical values of L and C .	CO4	PO3	10
	b)	What are the advantages of isolated DC-DC converters compared to their non-isolated counterparts? With a neat circuit diagram and waveforms, illustrate the working of a flyback converter.	CO3	PO2	10
		OR			
8	a)	The buck-boost regulator has an input voltage of $V_s = 12$ V. The duty cycle $k = 0.25$ and the switching frequency is 25 kHz. The inductance $L = 150 \mu\text{H}$ and filter capacitance $C = 220 \mu\text{F}$. The average load current $I_a = 1.25$ A. Determine (i) the average output voltage, V_a ; (ii) the peak-to-peak output voltage ripple, ΔV_c ; (iii) the peak-to-peak ripple current of inductor, ΔI ; (iv) the peak current of the transistor, I_p ; and (v) the critical values of L and C .	CO4	PO3	10
	b)	What are the advantages of resonant converters? With a neat circuit diagram and waveforms, illustrate the working of a ZVS DC-DC converter	CO3	PO2	10

UNIT - V					
	9	a)	Explain the operation of a 3-phase bridge inverter with star connected resistive load. Sketch the gating signal and line to line output voltage for 180° conduction mode.	CO3	PO2 10
		b)	With a neat circuit diagram illustrate the working principle of five level diode clamped multilevel inverter	CO3	PO2 10
			OR		
	10	a)	<p>A single-phase full bridge inverter has a resistive load of 2.4 Ohm and the d.c. input voltage of 48 V.</p> <p>Determine:-</p> <ul style="list-style-type: none"> (i) RMS output voltage at the fundamental frequency (ii) Output power P_o (iii) Average and peak currents of each transistor (iv) Peak blocking voltage of each transistor. (v) Total harmonic distortion and distortion factor. (vi) Harmonic factor and distortion factor at the lowest order harmonic. 	CO4	PO3 10
		b)	With a neat circuit diagram and waveforms, illustrate the working of Current Source Inverter	CO3	PO2 10
