

B.M.S. College of Engineering, Bengaluru-560019

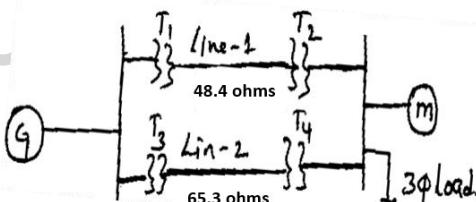
Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: V

Branch: Electrical and Electronics Engineering


Duration: 3 hrs.

Course Code: 23EE5PCPS1/22EE5PCPSA

Max Marks: 100

Course: Power System -1

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I						CO	PO	Marks																																
1	a	Develop an expression for: i. Change the base impedance from one set of base values to another set. (03M) ii. Show that the p.u. equivalent impedance of a two winding transformer is the same whether the calculations are made from H.V. side or the L.V. side. (03M)				CO1	PO1	06																																
1	b	What are the advantages of p.u. systems?				CO1	PO1	04																																
1	c	Draw the p.u. reactance diagram for the system shown in Fig. 1.c below. Choose a base of 22 kV, 100 MVA in the generator circuit. The Three phase load of 57 MVA, 0.6 pf lagging at 10.45 kV. Line 1 and 2 has reactance of 48.4 & 65.3 ohms respectively.				CO1	PO2	10																																
<p>Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.</p> <p>Fig. 1.c</p> <table border="1"> <thead> <tr> <th>Item</th> <th>S MVA</th> <th>V KV</th> <th>X_{pu} %</th> <th>Item</th> <th>S MVA</th> <th>V KV</th> <th>X_{pu} %</th> </tr> </thead> <tbody> <tr> <td>G</td> <td>90</td> <td>22</td> <td>18</td> <td>T₁</td> <td>50</td> <td>22/220</td> <td>10</td> </tr> <tr> <td>T₂</td> <td>40</td> <td>220/11</td> <td>6</td> <td>T₃</td> <td>40</td> <td>22/110</td> <td>6.4</td> </tr> <tr> <td>T₄</td> <td>40</td> <td>110/11</td> <td>8</td> <td>M</td> <td>66.5</td> <td>66.5</td> <td>18.5</td> </tr> </tbody> </table>									Item	S MVA	V KV	X _{pu} %	Item	S MVA	V KV	X _{pu} %	G	90	22	18	T ₁	50	22/220	10	T ₂	40	220/11	6	T ₃	40	22/110	6.4	T ₄	40	110/11	8	M	66.5	66.5	18.5
Item	S MVA	V KV	X _{pu} %	Item	S MVA	V KV	X _{pu} %																																	
G	90	22	18	T ₁	50	22/220	10																																	
T ₂	40	220/11	6	T ₃	40	22/110	6.4																																	
T ₄	40	110/11	8	M	66.5	66.5	18.5																																	
		OR																																						
2	a	i. What is the need for base value? ii. Write the equation for converting the p.u. impedance expressed in one base to another.				CO1	PO1	10																																

		iii. What are the approximations made in reactance diagram?			
2	b	Draw the p.u. reactance diagram for the system shown in Fig. 2.b below. Choose a base of 300 MVA, 20 kV on generator 03 (G3)	CO2	PO2	10
		Fig. 2.b			
		$G_1=200 \text{ MVA, } 20 \text{ kV, } X_d=15\%$ $G_2=300 \text{ MVA, } 18 \text{ kV, } X_d=20\%$ $G_3=300 \text{ MVA, } 20 \text{ kV, } X_d=20\%$ $T_1=300 \text{ MVA, } 220 \text{ Y/22 kV, } X_d=10\%$ $T_2=\text{Three single phase unit of } 100 \text{ MVA, } 130/25 \text{ kV, } X_d=10\%$ $T_3=300 \text{ MVA, } 220 /22 \text{ kV, } X_d=10\%$			
		UNIT - II			
3	a	Analyze and develop the doubling effect of the short circuit during symmetrical fault on a transmission line including wave forms.	CO1	PO1	10
3	b	A radial power system network is shown in Fig. 3.b. A three-phase balanced fault occurs at F. Determine the fault current and the line voltage at 11.8 kV bus under fault condition. Choose base values as 12 MVA and 11.8 kV.	CO2	PO2	10
		<p>LINE 1: $Z \text{ (1 PHASE)} = (9.45 + j 12.6) \text{ OHMS}$</p> <p>$Z \text{ (1 PHASE)} = 0.54 + 0.40 \text{ OHMS}$</p>			
		Fig. 3. b			

OR

4	a	Analyze and develop an expression for the maximum momentary current during symmetrical fault on a transmission line with waveforms.	CO2	PO2	10
4	b	A synchronous generator and a synchronous motor each rated 20 MVA, 12.66 kV having 15% reactance are connected through transformers and a line as shown in Fig. 4. b. The transformers are rated 20 MVA, 12.66/66 kV and 66/12.66 kV with leakage reactance of 10% each. The line has a reactance of 8% on base of 20 MVA, 66 kV. The motor is drawing a power of 10 MW at 0.8 leading power factor and a terminal voltage 11 kV when symmetrical three phase fault occurs at the motor terminals. Determine the generator and motor currents. Also determine the fault current.	CO2	PO2	10

Fig. 4.b

UNIT - III

5	a	Evaluate the sequence components of the three voltages: $V_a = 200\angle 0^\circ$; $V_b = 200\angle 245^\circ$ and $V_c = 200\angle 105^\circ$	CO2	PO2	06
5	b	Draw different configuration of transformer for zero sequence networks.	CO2	PO1	06
5	c	A 50 MVA, 11kV, synchronous generator has a sub transient reactance of 20%. The generator supplies two motors over a transmission line with transformers at both ends as shown in Fig. 5.c. The motors have rated inputs of 30 and 15 MVA, both 10 kV, with 25% sub transient reactance. The three phase transformers are both rated 60 MVA, 10.8/121 kV, with leakage reactance of 10% each. Assume zero sequence reactance for the generator and motors is 6% each. Current limiting reactors of 2.5 ohms each are connected in the neutral of the generator and motor number 2. The zero-sequence reactance of the transmission line is 300 ohms. The series reactance of the line is 100 ohms. Draw the positive, negative and zero sequence networks. Assume base MVA =50MVA and base kV =11 kV of Generator.	CO2	PO2	08

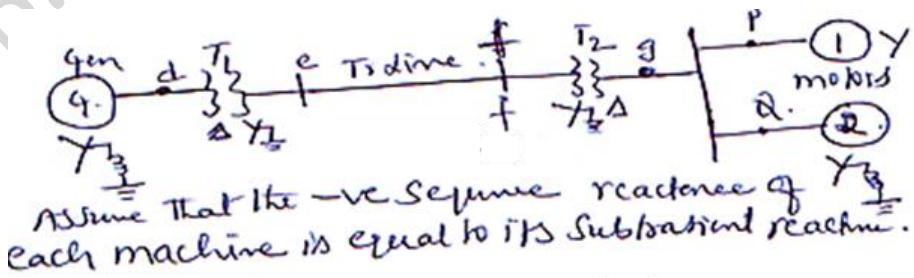


Fig. 5.c

OR

6	a	Analyze and develop expression for phase shift symmetrical components in Y- Δ Transformer bank with positive, negative sequences voltage and current vector diagrams.	CO2	PO1	10
6	b	For the power system shown in Fig. 6.b with the data given, draw the zero sequence, positive sequence and negative sequence networks. Assume base 50 MVA and 11 kV on generator side.	CO2	PO2	10
Fig. 6. b					
UNIT - IV					
7	a	Analyze and obtain an expression for fault current, line current for double line to ground fault on unloaded generator through impendence. Draw the inter connection of sequence network.	CO2	PO1	10
7	b	A 25 MVA, 13.2 kV alternator with solidly grounded neutral has a sub-transient reactance of 0.25 pu. The negative and zero sequence reactance are 0.35 and 0.1 pu, respectively. A single line to ground fault occurs at the terminals of an unloaded alternator. Neglecting resistance, determine the fault current and the line-to-line voltages.	CO2	PO2	10
OR					
8	a	Analyze and obtain an expression for fault current, line current for single line to ground fault on unloaded generator through impendence. Draw the inter connection of sequence network.	CO2	PO1	10
8	b	A 25 MVA, 13.2 kV alternator with solidly grounded neutral has a sub-transient reactance of 0.25 pu. The negative and zero sequence reactance are 0.35 and 0.1 pu, respectively. A line-to-line fault occurs at the terminals of an unloaded alternator. Neglecting resistance, determine the fault current and the line-to-line voltages.	CO2	PO2	10
UNIT - V					
9	a	Analyze and develop the relation for power-angle equation of a non-salient pole synchronous machine connected to an infinite bus and also draw the power angle curve.	CO3	PO2	10
9	b	A salient pole synchronous machine having $X_d=0.6$ pu and $X_q=0.4$ pu per phase is operated from an infinite bus voltage 1.0 pu. If the excitation voltage is 1.1 pu. Evaluate the SSSL and angle at which it occurs.	CO3	PO2	10
OR					
10	a	Analyze and derive the swing equation and swing curve.	CO3	PO2	10
10	b	A loss free alternator supplies 50 MW to an infinite bus, the SSSL being 100 MW. Evaluate if the alternator will remain stable if the input to the prime mover of the alternator is abruptly increased by 40 MW.	CO3	PO2	10