

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2024 Semester End Make-Up Examinations

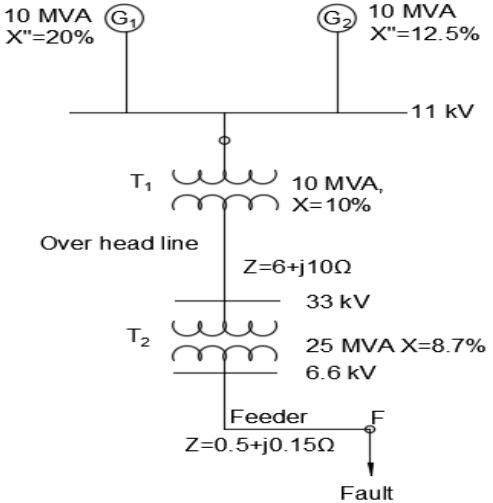
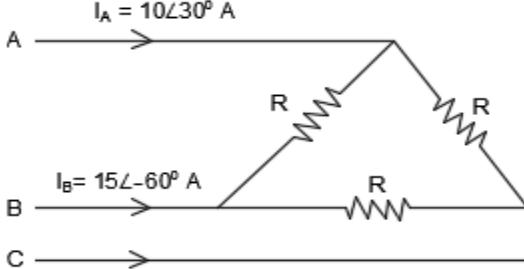
Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE5PCPSA

Course: Power System Analysis

Semester: V



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define the per unit quantity. List any four advantages of per unit computations.	CO1	PO1	06
	b)	Prove that the per unit impedance of two winding transformer will remain same whether referred on to primary or secondary side.	CO1	PO1	06
	c)	The power system network is shown in Figure 1.	CO1	PO2	08
<p>Figure 1</p> <ol style="list-style-type: none"> Evaluate the per unit impedance of each component for a base of 30 MVA and 33 kV for the transmission line. Draw the per unit impedance diagram of the power system network. 					
UNIT - II					
2	a)	Explain the transients occurring on a transmission line on the occurrence of a short circuit. Obtain the expression for maximum momentary current.	CO2	PO1	10
	b)	Two generators are connected in parallel to the low- voltage (LV) side of a three-phase Δ -Y transformer. The ratings of the machines are: Generator: G_1 : 50MVA, 13.8KV Sub transient reactance: X'' Generator: G_2 : 25MVA, 13.8 KV Sub transient reactance: X' Transformer : 75MVA 13.8 Δ -6.9 YKV Reactance=10%	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		Before the fault occurs, the voltage on the high- voltage (HV) side of the transformer is 66KV. The transformer is unloaded, and there is no circulating current between the generators. Evaluate the sub-transient current in each generators when a three-phase fault occurs on the high voltage side of the transformer.			
		OR			
3	a)	Discuss the various reactance in an unloaded synchronous generator under short circuit condition with its equivalent circuit diagram.	CO2	PO1	10
	b)	A 3-phase fault occurs at point F, for the radial network shown in Figure 3.	CO2	PO2	10
<p>Figure 3.</p> <p>Determine the following:</p> <ol style="list-style-type: none"> Per unit reactance of each component Thevenin's equivalent impedance Fault current 					
UNIT - III					
4	a)	Develop an expression for three phase complex power in terms of symmetrical components.	CO2	PO1	06
	b)	A balanced resistive load connected across an unbalanced 3-phase supply is shown in Figure 4. Evaluate the symmetrical components of the line currents.	CO2	PO2	06
	c)	<p>Figure 4.</p> <p>Explain the positive, negative and zero sequence impedances and networks of an unloaded synchronous generator.</p>	CO2	PO1	08

UNIT – IV					
5	a)	Discuss on two conductor open faults in power systems.	CO2	PO1	06
	b)	<p>A 50 MVA, 11 kV, 3 –phase synchronous generator is subjected to different types of faults. the fault currents are as follows:</p> <ul style="list-style-type: none"> • Three phase fault = 2000 A • Line-to-line fault = 1800 A • Line-to-ground fault = 2200 A <p>The generator neutral is solidly grounded. Determine the sequence impedances of the generator.</p>	CO2	PO2	06
	c)	Develop an expression for fault current, when double line-to-ground fault through impedance occurs on an unloaded generator.	CO2	PO1	08
UNIT - V					
6	a)	Compare steady state and transient state stability applied to power system stability studies.	CO3	PO1	06
	b)	<p>A 60 Hz, 4 pole turbo-generator rated 100MVA, 13.8 KV has inertia constant of 10 MJ/MVA. The input to the generator is suddenly raised to 60 MW for an electrical load of 50 MW and the rotor acceleration is maintained for 12 cycles.</p> <p>Determine the following:</p> <ol style="list-style-type: none"> i. Stored energy in the rotor at synchronous speed ii. Rotor acceleration iii. The change in torque angle and rotor speed in rpm at the end of 12 cycles 	CO3	PO2	06
	c)	Develop an expression for power angle equation of a non-salient pole synchronous machine connected to an infinite bus. Draw the power angle curve.	CO3	PO1	08
OR					
7	a)	Explain any three methods of improving transient stability.	CO3	PO1	06
	b)	Explain the concept of Equal Area Criterion (EAC), when a power system is subjected to sudden change in power input to the generator.	CO3	PO1	06
	c)	Derive swing equation for a synchronous machine connected to an infinite bus.	CO3	PO1	08

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2024 Semester End Make-Up Examinations

Programme: B.E.

Branch: Electrical & Electronics Engineering

Course Code: 22EE5PCPSP

Course: POWER SYSTEM PROTECTION

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Discuss the essential qualities of protective relaying.	CO1	PO1	06
		b)	Define fuse law. Explain the characteristics of fuses in detail.	CO1	PO1	06
		c)	A 50 Hz generator has e.m.f. to neutral 7.5 kV (r.m.s.). the reactance of generator and connected system is 4Ω and distributed capacitance to neutral is $0.01 \mu\text{F}$ with negligible resistance, find: a. Maximum voltage at the circuit breaker contacts. b. Frequency of oscillations. c. RRRV average up to first peak of oscillations.	CO1	PO2	08
OR						
	2	a)	Explain arc interruption theories.	CO1	PO1	06
		b)	Explain primary and back up protection with a neat sketch.	CO1	PO2	06
		c)	For a 132 kV system, the reactance and capacitance up to the location of the circuit breaker is 3Ω and $0.015 \mu\text{F}$ respectively. Calculate the following: a. Frequency of transient oscillations. b. Maximum value of Restriking Voltage across the contacts of the circuit breaker. c. Maximum value of RRRV.	CO1	PO2	08
UNIT - II						
	3	a)	Explain the construction and working of Vacuum Circuit breaker with neat diagram. Also mention the advantages and disadvantages of the same.	CO2	PO2	08
		b)	Derive a torque expression for electro-mechanical relay.	CO2	PO2	07

	c)	<p>Fig. 3(c) shows the part of a typical power system. If for the discrimination, the time grading margin between the relays is 0.6 sec; calculate the time of operation of relay 1 and time setting multiplier for relay 2. Refer the characteristics given. Time setting multiplier of relay 1 is 0.3.</p> <p>Fig. 3(c)</p>	CO2	PO2	05
		OR			
4	a)	Explain the construction and working of minimum Oil Circuit breaker with neat diagram.	CO2	PO1	08
	b)	Explain the construction and working of directional electro-mechanical relay with neat sketch and characteristics.	CO2	PO1	07
	c)	Find PSM for an IDMT over current relay (51) which is mentioned in the single line diagram.	CO2	PO2	05
		UNIT – III			
5	a)	With a neat sketch explain the working principle of static relays. What are its advantages and disadvantages?	CO3	PO2	07

	b)	With a neat circuit diagram, explain the working of circulating current type rectifying bridge comparator.	CO3	PO2	07
	c)	With the help of a block diagram, explain the working of block spike co-incidence type of phase comparator.	CO3	PO2	06
UNIT - IV					
6	a)	What are the factors that cause faults in generator? Explain the scheme employed for the protection against the earth faults in generator.	CO3	PO2	07
	b)	With a neat diagram, explain the working of Buchholz's relay.	CO3	PO2	07
	c)	Illustrate with a neat diagram Merz-Price voltage balance relay for a feeder protection.	CO3	PO2	06
UNIT - V					
7	a)	With a neat block diagram of digital relaying, explain the working and merits of digital relaying.	CO4	PO2	08
	b)	Explain how over current relay coordination is accomplished in interconnected power system.	CO4	PO2	06
	c)	Explain tripping mechanism of digital relay.	CO4	PO2	06

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2024 Semester End Make-Up Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE5PE1SE

Course: Sustainable Energy Systems

Semester: V

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Describe with a neat sketch, the principle of Fluidization bed combustion.	CO1	PO2	08			
	b)	Explain about Energy Scenario in India	CO1	PO1	05			
	c)	Describe briefly the conventional & Non-conventional Energy Sources	CO1	PO1	07			
			UNIT - II					
2	a)	With neat schematic diagram, explain the working principle of Nuclear power plant	CO2	PO7	07			
	b)	What are the site selection considerations for Hydro electric power plant	CO2	PO7	07			
	c)	Explain the main factors for selection of site for thermal power station.	CO2	PO7	06			
			OR					
3	a)	With schematic diagram, explain the main parts & operation of a thermal power plant	CO2	PO7	10			
	b)	Explain the following terms related to hydroelectric power generation: i) Spillway, ii) Surge Tank, iii) Penstock & Tunnel	CO2	PO7	06			
	c)	Discuss some of the safety measures incorporated in nuclear power plant?	CO2	PO7	04			
			UNIT - III					
4	a)	With a neat diagram, explain the working of a solar power plant.	CO4	PO6	08			
	b)	Draw and explain the I-V & P-V characteristics of a solar cell.	CO4	PO6	05			
	c)	Explain in detail the classifications of solar cells.	CO4	PO6	07			
			OR					
5	a)	Differentiate stand-alone & Grid connected PV systems	CO4	PO6	08			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain in detail the solar cell connecting arrangements & also list the applications of solar Photovoltaic Systems	CO4	PO6	07
	c)	Explain the concept of partial shading when four modules are shaded.	CO4	PO6	05
		UNIT - IV			
6	a)	Define Smart Grid & mention any Four objectives of Smart Grid?	CO3	PO7	05
	b)	What are Hybrid Systems, explain briefly?	CO3	PO7	05
	c)	Explain the basic working principle of wind energy conversion system (WECS) with a neat diagram.	CO3	PO7	10
		UNIT - V			
7	a)	Explain the following terms: (i) Connected load (ii) Max. demand (iii) Demand factor, (iv) Average load, (v) Load factor, (vi) Plant use factor, (vii) Plant capacity factor	CO3	PO6	10
	b)	Name different types of tariff & explain any three types.	CO3	PO6	10
