

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Electrical & Electronics Engineering

Duration: 3 hrs.

Course Code: 19EEE5PCTND

Max Marks: 100

Course: Transmission and Distribution

Date: 01.03.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Mention the advantages of high voltage for power transmission. Justify each. **07**
 b) Derive the expression for the sag when the supports are at equal level. **07**
 c) A string of 4 insulators has self-capacitance equal to 4 times the pin to earth capacitance. Calculate (i) the voltage distribution across various units as a percentage of total voltage across the string. (ii) string efficiency. **06**

OR

2 a) Explain feeder, distributor and service mains of a distribution scheme. **06**
 b) Define string efficiency. Name the methods of increasing string efficiency and explain the use of guard ring. **07**
 c) A transmission line conductor is having a diameter of 20 mm and weights 1.0 kg/mt. The span is 280 mts. The wind pressure is 40 kg/mt² of projected area with ice coating of 10 mm. The ultimate strength of conductor is 10000kg. Calculate the maximum sag if the factor of safety is 2 and ice weights 910 kg/mt³. **07**

UNIT - II

3 a) Derive an expression for the insulation resistance of a single core cable. **06**
 b) Derive an expression for power loss in dielectric of single core cable. **06**
 c) The maximum and minimum stresses in the dielectric of a single core cable are 40 kv/cm (rms) and 10 kv/cm (rms respectively. If the conductor diameter is 2 cm, find (i) thickness of insulation and (ii) operating voltage. **08**

UNIT - III

4 a) Derive an expression for the inductance of a single phase two wire line. **06**
 b) Derive an expression for line to neutral capacitance for a three phase overhead transmission line when the conductors are unsymmetrically spaced but transposed. **08**
 c) A three-phase line has conductor 2 cm in diameter spaced equilaterally 1 mt apart. If the dielectric strength of air is 30 kv(max) per cm, find the disruptive critical voltage for the line. Take air density factor $\delta = 0.952$ and irregularity factor $m=0.9$. **06**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV

5 a) Explain how overhead transmission line are classified. 04

b) Derive an expression for sending end voltage and current for long transmission line using rigorous solution method. 10

c) A 132kv, 50Hz, three-phase transmission line delivers a load of 50MW at 0.8 power factor lagging at the receiving end. The generalized constants of the transmission line are $A = D = 0.95\angle 1.4^\circ$, $\gamma = 96\angle 78^\circ$, $C = 0.0015\angle 90^\circ$. find the regulation of the line .Use nominal T-method. 06

UNIT - V

6 a) Explain the radial feeders used in distribution system. 05

b) What are the various advantages of neutral grounding? 05

c) The loading on a distributor is shown in figure Q6(C). The distributor is a two-core cable for which the resistance and reactance are 0.25Ω and 0.125Ω per 1000 meters of cable run respectively. What should be the voltage at the point A to maintain 400V at the point D? 10

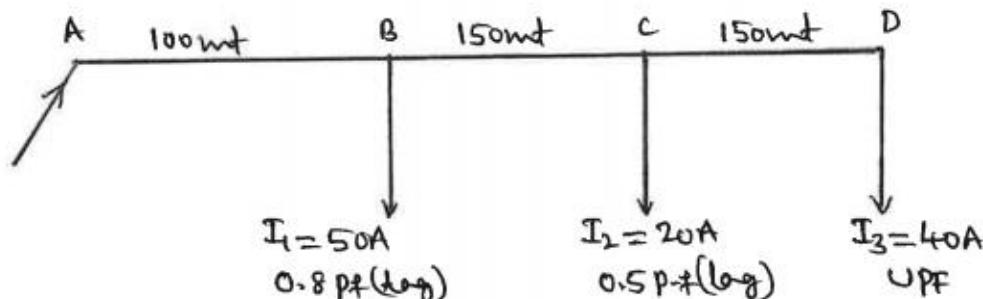


Fig. Q6(c)

OR

7 a) Derive the expression for A.C distributors with concentrated loads of referring power factor: Power factors referred to receiving end voltage. 10

b) Find the cross-section area of the distributor shown in figure Q7 (b). The distances are given in meters. Take $\rho = 1.78 \times 10^{-8} \Omega\text{-mt}$. The maximum voltage drop is no to exceed 10V. The conductor is fed from point A. 10

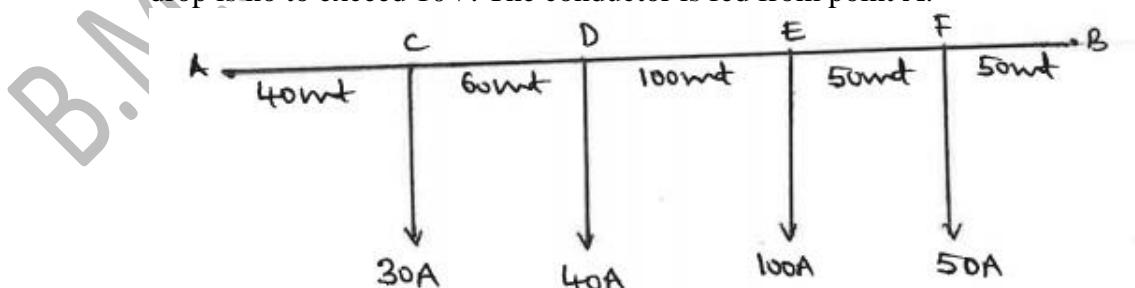


Fig. Q7(b)
