

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July / August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical & Electronics Engineering

Course Code: 19EE6OE1PS

Course: PLC and SCADA

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	What is data logger? Show a block diagram of data -logging system employed in a process control loop.	CO1	PO1	06	
	b)	Suggest a suitable block diagram of illustrate the concept of direct digital control (DDC) applied to an industrial process and justify the same.	CO1	PO1	08	
	c)	What are the features of Supervisory Control of Data Acquisition system has made it quite popular in today's world.	CO1	PO1	06	
			UNIT - II			
2	a)	With a neat block diagram, explain the basic architecture of PLC	CO1	PO2	08	
	b)	With a neat diagram, explain analog input & output to a PLC	CO2	PO2	04	
	c)	What are the various languages adopted for programming the PLC and explain standard cover the complete life cycle of PLCs as per IEC61131 standards.	CO2	PO2	08	
			UNIT - III			
3	a)	Describe pulse & retentive timer PLC instructions with neat diagram.	CO3	PO2	08	
	b)	Describe the counting sequence of an up counter & a down-counter. Also write a simple program for up-counter.	CO4	PO2	08	
	c)	Explain the counter part of the instructions.	CO3	PO3	04	
			OR			
4	a)	Describe Sequencing & Cascaded timers with relevant diagram.	CO4	PO3	07	
	b)	With a neat diagram explain generic up/down-counter Program and Counting.	CO3	PO3	07	
	c)	With a neat description and test sequence, develop the ladder logic that will turn on a light (201), after switch A (001) has been closed 10 times. Push button B (002) will reset the counters.	CO3	PO3	06	

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	Explain the operation of the following instructions. (i) MOV (ii) MVM (iii) MEQ (iv) LIM	CO3	PO2	08
	b)	What do you mean by program control instructions? Explain any three	CO3	PO3	08
	c)	Enumerate the PLC sequencer instructions with a neat block.	CO3	PO2	04
	OR				
6	a)	Describe Move and masked Move instructions with associated status bits and address format. List all rules pertaining to MVM instruction.	CO3	PO2	07
	b)	What are the advantages of using the file copy (COP) or fill file (FLL) instruction rather than FAL instruction for the transfer of data?	CO3	PO2	07
	c)	Explain the operation of the following instructions (i) JSR (ii) SBR (iii) RET	CO3	PO2	06
UNIT - V					
7	a)	Develop the DCS hierarchy diagram and discuss each level in detail.	CO2	PO1	10
	b)	What are the different functional levels of DCS and how are they used in automation?	CO2	PO2	10
