

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Institutional Elective

Duration: 3 hrs.

Course Code: 23EE6OE1SW

Max Marks: 100

Course: Solar and Wind energy Technologies

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What is the broad classification of energy supplies? Represent them with the help of energy flow diagrams showing the position of the intercepting device (D).			<i>CO1</i>	<i>PO7</i>	10
		b)	Draw the block diagram showing renewable energy embedded into a grid network which is connected to finite energy supply as well with feedback control. Is Negative feedback control suitable for renewable energy supplies? Explain			<i>CO1</i>	<i>PO7</i>	10
	OR							
	2	a)	Draw the block diagram showing the natural renewable energy currents on earth indicating the form of energy and its end use.			<i>CO1</i>	<i>PO7</i>	10
		b)	Explain the principles to be applied in efficient use of Renewable energy?			<i>CO1</i>	<i>PO7</i>	10
				UNIT - II				
	3	a)	What is the objective behind two axis tracking of solar collectors? Explain. Give the expressions for different components of solar radiation on a tilted collector surface with two axis tracking.			<i>CO3</i>	<i>PO3</i>	10
		b)	Calculate the sun rise time, sun set time and day length hours in Chennai (13.08°N , 80.27°E) on 22 nd of October.			<i>CO2</i>	<i>PO2</i>	06
		c)	Compare the thermopile sensors and photodiode sensors used in solar radiation measurement instruments.			<i>CO3</i>	<i>PO3</i>	04
	OR							
	4	a)	Illustrate with the help of diagrams different components of solar insolation striking a tilted collector surface along with equations for each component.			<i>CO2</i>	<i>PO2</i>	10

	b)	With the help of a diagram explain the working of a Angstrom compensated type pyrheliometer.	CO3	PO3	06
	c)	Define i) Declination angle (δ) ii) Solar altitude angle (β)	CO2	PO2	04
UNIT - III					
5	a)	Classify different technologies used for manufacturing of PV cells.	CO3	PO3	10
	b)	Describe the process of forming amorphous silicon PV cells or modules. Mention the advantages of thin film silicon over the conventional crystalline silicon.	CO3	PO3	10
OR					
6	a)	Obtain an expression for voltage across a PV module having n cells with one cell being shaded by drawing suitable diagrams.	CO3	PO3	08
	b)	BP2150S, 150 Wp PV module is operating at 1 - Sun insolation and ambient temperature of 30°C . The module has a NOCT of 47°C . The manufacturer data for the module are : V_{oc} at STC is 42.8 V, temperature coefficient of voltage is $-0.37\%/\text{ }^{\circ}\text{C}$, temperature coefficient of power is $-0.5\%/\text{ }^{\circ}\text{C}$. Estimate the cell temperature, open circuit voltage, power output of the module and percentage change in power output at the operating conditions given above.	CO3	PO3	08
	c)	What is the function of blocking diodes? Show their connection in a PV array?	CO3	PO3	04
UNIT - IV					
7	a)	Draw the block diagram of a standalone PV system and explain its operation. Mention the obligation on the users of standalone PV systems?	CO3	PO3	10
	b)	A buck boost converter is connected at the output of a PV array. The output of the buck boost converter supplies the load. If V_{oc} and I_{sc} are the open circuit voltage and short circuit current of the PV array respectively. Find the load voltage and current in terms of V_{oc} and I_{sc} at a duty cycle i) $D = \frac{1}{3}$ ii) $D = \frac{2}{3}$ of the buck boost converter.	CO3	PO3	06
	c)	Bring out the relationship between energy efficiency and coulomb efficiency of a battery.	CO3	PO3	04
OR					
8	a)	Draw the block diagram of a grid connected PV system. explain its operation. What are the advantages and disadvantages of a grid connected PV system?	CO3	PO3	10

	b)	Illustrate the effect of module mismatch if Two PV modules each of 180 Wp connected in parallel produce peak power at (30V, 6A) and (36 V ,5A) respectively. Sketch the I-V characteristics of the parallel combination and find the peak power output, corresponding voltage and current output.	CO3	PO3	06
	c)	Explain the meaning of “peak hours “approach in design of PV systems.	CO3	PO3	04
UNIT - V					
9	a)	Obtain an expression for the power in the wind.	CO2	PO2	06
	b)	Mention the environmental impacts of wind turbines	CO1	PO7	06
	c)	With the help of a block diagram explain any one scheme of grid connected wind to electric power conversion system.	CO4	PO3	08
OR					
10	a)	What is the impact of tower height and roughness of the surface on wind velocity? Explain.	CO2	PO2	06
	b)	What are the advantages of a Wind Farm? Mention the guidelines followed in tower spacing in a wind farm.	CO4	PO3	06
	c)	With the help of a neat diagram explain the construction of a horizontal axis wind turbine.	CO4	PO3	08

B.M.S.C.E. - EVEN SEMESTER