

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE6PE2ED

Max Marks: 100

Course: Electrical Machine Design and Drawing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are the latest methods employed in the manufacturing of machines? Explain.	<i>CO1</i>	<i>PO2</i>	04
	b)	List and explain the limitations in design.	<i>CO1</i>	<i>PO2</i>	08
	c)	Which factors should be taken into account while designing electrical machines, and why are they important?	<i>CO1</i>	<i>PO3</i>	08
OR					
2	a)	Explain the types and properties of insulating materials used in electrical machines. How does insulation affect machine life?	<i>CO1</i>	<i>PO2</i>	08
	b)	Explain the classification of magnetic material related to the value of permeability distinguish between soft and hard magnetic material.	<i>CO1</i>	<i>PO2</i>	06
	c)	State the properties that are typically preferred in magnetic materials for optimal performance.	<i>CO1</i>	<i>PO3</i>	06
UNIT - II					
3	a)	Derive an expression for output equation of a three-phase core type transformer.	<i>CO2</i>	<i>PO3</i>	08
	b)	Calculate the active and reactive components of no-load current of 400V, 50 Hz, single phase transformer having the following particulars: Core of transformer steel; stacking factor = 0.9, density = 7.8×10^3 kg/m ³ , length of mean flux path 2.2m; gross iron area = 10×10^{-3} m ² , primary winding turns = 200, joints equivalents to 0.2 mm air gap use the following data for calculations	<i>CO3</i>	<i>PO4</i>	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

			B _m Wb/m ²	0.9	1.0	1.2	1.3	1.4			
			mmf AT/m	130	210	420	660	1300			
			Iron loss w/kg	0.8	1.3	1.9	2.4	2.9			
OR											
4	a)	Describe how the choice of flux density influences transformer design. How is an appropriate flux density value selected?		CO2	PO2				08		
	b)	Determine the dimensions of the core and yoke for a 100kVA, 50 Hz, single phase, core type transformer. A square core is used with distance between the adjacent limbs equal to 1.6 times width of the laminations. Assume voltage per turn of 14V. maximum flux density 1.1wb/m ² , window space factor 0.32 and the current density 3A/mm ² . Take Stacking factor =0.9. flux density in the yoke to be 80% of flux density in the core.		CO3	PO5				12		
UNIT - III											
5	a)	Derive an expression for the output equation of a DC machine.		CO3	PO2				08		
	b)	Find the main dimensions and number of poles of a 38.68kW, 230V, 1400 rpm shunt motor so that a square pole face is obtained. B _{av} in the gap is 0.5 wb/m ² and the amp-conductors per m. are 22,000. The ratio of pole arc to pole pitch is 0.7. Assume the efficiency of the machine as 90 percent.		CO3	PO5				12		
OR											
6	a)	Explain the factors to be consider for selecting the number of poles of D.C. machines and write any three advantages of higher values of number of poles of D.C. machine.		CO2	PO3				08		
	b)	A design is required for a 50 kW, 4 pole, 600 rpm, dc shunt generator, with a terminal voltage of 220 V. If maximum gap density is 0.83 Wb/m ² and the armature ampere conductors/meter are 30,000. Calculate the suitable dimensions of armature core to give a square pole face. Assume that full load armature voltage drop is 3% of rated terminal voltage and that of field current is 1% of rated full load current. Ratio of pole arc to pole pitch is 0.67.		CO3	PO4				12		
UNIT - IV											
7	a)	Discuss the factors affecting the choice of average flux density and specific electric loading in electrical machine design.		CO2	PO2				08		
	b)	Determine the main dimensions, turns per phase number of slots, conductor cross section and slot area of a 250h.p, 3-phase, 50Hz, 400V 1410rpm, cage induction motor. Assume B _v = 0.5 wb/m ² , ac= 30000A/m, efficiency = 0.9 and p.f = 0.9, winding factor = 0.955, current density = 3.5A/mm ² , slot space factor is 0.4 and		CO3	PO5				12		

		<p>ratio core length to pole pitch = 1.2 take 5 slots per pole per phase motor is delta connected.</p>			
OR					
8	a)	Explain the rules followed in selecting number of rotor slots.	CO3	PO1	08
	b)	Calculate (i) diameter (ii) length (iii) number of turns per phase (iv) full load current and cross-section of conductors, and (v) total I^2R loss of stator of 3 phase, 120 kW, 2200 Volts, 50 Hz, 750 rpm, (synchronous speed), star connected induction motor from the following particulars: $-B_{av} = 0.48$ Tesla, $ac = 26000$ amp. cond. per meter, Efficiency = 92%, power factor = 0.88, $L = 1.25 \tau$, $K_w = 0.955$, current density = $5A/mm^2$, mean length of stator conductors = 75 cm., resistivity of copper (ρ) = 0.021 ohm per m. and mm^2 .	CO3	PO5	12
UNIT - V					
9	a)	Explain the different types of substations used in power systems. Discuss their purposes and typical applications.	CO4	PO6	10
	b)	Describe the main components and essential equipment involved in high-voltage substation design, highlighting the purpose and function of each.	CO4	PO3	10
OR					
10	a)	Discuss the importance of substation earthing. Explain the methods used for effective earthing in substations.	CO4	PO7	8
	b)	Draw and explain the single line diagram for a 400 kV/220 kV substation, indicating all major components.	CO4	PO10	8
	c)	List any four standard electrical symbols and state their significance in electrical schematic diagrams	CO4	PO10	4
