

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE6PE2FV

Max Marks: 100

Course: Fundamentals of VLSI

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	With neat sketches, explain the fabrication process of P-well CMOS Transistor.	CO1	PO1	10
		b)	Explain thermal sequence difference between NMOS and CMOS processes.	CO1	PO1	05
		c)	Explain the production of E-beam masks.	CO1	PO1	05
OR						
	2	a)	With neat sketches, explain the fabrication process of NMOS Transistor.	CO1	PO1	10
		b)	State and explain Moore's law.	CO1	PO1	05
		c)	Explain the various modes of operation of an NMOS enhancement mode transistor.	CO1	PO1	05
UNIT - II						
	3	a)	Derive the expressions for drain to source current I_{ds} versus voltage V_{ds} relationship in different operating regions.	CO2	PO1	06
		b)	Draw and explain briefly, the transfer characteristics of a CMOS inverter.	CO2	PO2	08
		c)	Explain Latch-up in CMOS circuits.	CO2	PO1	06
OR						
	4	a)	Derive the Pull-up to pull-down ratio for an NMOS inverter driven by another NMOS inverter	CO2	PO2	08
		b)	Define i) Output Conductance ii) Transconductance	CO2	PO1	06
		c)	What is Body effect? Explain briefly MOS transistor threshold voltage and list the parameters on which it depends.	CO2	PO1	06

		UNIT - III			
5	a)	Derive the expressions for CMOS inverter delay in terms of Rise time and Fall time.	CO2	PO2	08
	b)	Explain briefly Lambda based design rules for i) wires ii) Transistors	CO2	PO1	06
	c)	Draw the stick diagram and mask layout for an 8:1 NMOS inverter in NMOS design style.	CO2	PO2	06
		OR			
6	a)	Find the expressions for NMOS inverter pair delay	CO2	PO2	08
	b)	Draw the stick diagram and mask layout for a 1:1 CMOS inverter in CMOS design style.	CO2	PO2	06
	c)	Explain briefly the effect of wiring capacitances in VLSI designs.	CO2	PO1	06
		UNIT - IV			
7	a)	Find the scaling factors for i) Gate Area ii) Gate Capacitance iii) Energy stored in gate capacitance iv) Saturation Current	CO3	PO2	08
	b)	List the advantages of scaling. Define Scaling factor.	CO3	PO1	06
	c)	With the help of truth table, draw the Stick diagram of 2 input CMOS NOR gate and 2 input NMOS NOR Gate.	CO3	PO2	06
		OR			
8	a)	Briefly describe the architecture issues that occur for system design process.	CO3	PO1	06
	b)	Find the scaling factors for v) Gate Delay vi) Frequency of operation vii) Power Dissipation per gate viii) Current Density	CO3	PO2	08
	c)	Explain briefly the limitations of scaling.	CO3	PO1	06
		UNIT - V			
9	a)	Derive the expression for Z_{pu}/Z_{pd} for a Pseudo- NMOS Logic.	CO4	PO2	10
	c)	What is structured design? Design a parity generator using the structured approach.	CO4	PO2	10
		OR			
10	a)	Design 4 to 1 multiplexer using switch logic.	CO4	PO2	08
	b)	Draw the stick diagram for 1-bit non inverting NMOS dynamic storage and hence explain the shift register.	CO4	PO2	06
	c)	Differentiate between Clocked CMOS logic and Dynamic CMOS logic.	CO4	PO2	06