

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 19EE6PE3ED

Max Marks: 100

Course: Control of Electric Drives

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Describe the Electric drive with a neat block diagram.	<i>CO1</i>	<i>PO1</i>	10
	b)	A motor drives two loads. One has rotational motion. It is coupled to the motor through a reduction gear with $a=0.1$ and an efficiency of 90 %. The load has a moment of inertia of 10 kg-m^2 and a torque of 10 N-m . Other load has translation motion and consists of 1000 kg weight to be lifted up at a uniform speed of 1.5 m/s. Coupling between this load and the motor has an efficiency of 85 %. Motor has an inertia of 0.2 kg-m^2 and runs at a constant speed of 1420 rpm. Determine equivalent inertia to the motor shaft and power developed by the motor.	<i>CO1</i>	<i>PO1</i>	10
OR					
2	a)	A drive has the following parameters: $J=10 \text{ kg-m}^2$, $T=100-0.1 \text{ N, N-m}$, passive load torque $T_l=0.05 \text{ N, N-m}$, where N is the speed in rpm. Initially, the drive is operating in a steady state. Now it is to be reversed. For this motor characteristics are changed to $T=-100-0.1 \text{ N, N-m}$. Calculate the time reversal.	<i>CO1</i>	<i>PO1</i>	12
	b)	Explain the stability of an electric drive.	<i>CO1</i>	<i>PO1</i>	08
UNIT - II					
3	a)	With a neat waveform demonstrate the three-phase fully controlled converter control of DC separately excited DC motor when $\alpha=60$ and $\alpha=90$.	<i>CO2</i>	<i>PO2</i>	12
	b)	A 220 V, 200 A, 800 rpm DC separately excited motor has an armature resistance of 0.06Ω . The motor armature is fed from a variable voltage source with an internal resistance of 0.04Ω . Calculate the internal voltage of the variable voltage source when the motor is operating in regenerative braking at 80 % of the rated motor torque and 600 rpm.	<i>CO2</i>	<i>PO2</i>	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Demonstrate single-phase semi-controlled converter control of DC separately excited DC motor.	CO2	PO2	10
	b)	A 220 V, 970 rpm, 100 A DC separately excited motor has an armature resistance of 0.05Ω . It is braked by plugging from an initial speed of 1000 rpm. Calculate: (i) Resistance to be placed in the armature circuit to limit braking current to twice the full load. (ii) Braking torque. (iii) Torque required when speed fallen to zero.	CO2	PO2	10
UNIT - III					
5	a)	Describe the operation of induction motor when unbalanced voltage is applied.	CO2	PO2	10
	b)	With neat sketch explain the DOL starter used for starting of a 3 Phase induction motor.	CO2	PO2	10
OR					
6	a)	Discuss the operation of induction motor when non sinusoidal input is applied.	CO2	PO2	08
	b)	With a neat sketch explain the auto transformer starting of a 3-Phase induction motor.	CO2	PO2	12
UNIT - IV					
7	a)	Explain the V/F control of induction motor.	CO2	PO2	10
	b)	With a neat circuit explain the control of induction motor by using Voltage source inverter.	CO2	PO2	10
OR					
8	a)	With a neat diagram explain the CSI fed induction motor.	CO1	PO1	10
	b)	With a neat sketch explain the static Kramer drive.	CO1	PO1	10
UNIT - V					
9	a)	With a neat diagram explain the construction and working of a BLDC motor.	CO3	PO3	10
	b)	Explain the designing of a drive system for Rolling mills.	CO3	PO3	10
OR					
10	a)	With a neat diagram explain the construction and working of a SRM motor.	CO3	PO3	10
	b)	Explain the designing of a drive system for Rolling mills.	CO3	PO3	10
