

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 19EE6PE3ED

Max Marks: 100

Course: Control of Electric Drives

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks			
1			a) Describe the Electric drive with a neat block diagram.								
			b) Obtain the fundamental torque equation of a motor load system.								
			c) A motor drives two loads. One has rotational motion. It is coupled to the motor through a reduction gear with $a=0.1$ and an efficiency of 90 %. The load has a moment of inertia of 10 kg-m^2 and a torque of 10 N-m. Other load has translation motion and consists of 1000 kg weight to be lifted up at a uniform speed of 1.5 m/s. coupling between this load and the motor has an efficiency of 85 %. Motor has an inertia of 0.2 kg-m^2 and runs at a constant speed of 1420 rpm. Determine equivalent inertia to the motor shaft and power developed by the motor.								
			UNIT - II								
2			a) With a neat waveform demonstrate the three-phase fully controlled converter control of DC separately excited DC motor when $\alpha=60^\circ$ and $\alpha=90^\circ$.			CO3	PO1	12			
			b) A 220 V, 200 A, 800 rpm DC separately excited motor has an armature resistance of 0.06Ω . The motor armature is fed from a variable voltage source with an internal resistance of 0.04Ω . Calculate the internal voltage of the variable voltage source when the motor is operating in regenerative braking at 80 % of the rated motor torque and 600 rpm.								
			OR								
3			a) Demonstrate single phase semi controlled converter control of DC separately excited DC motor.			CO3	PO1	10			
			b) A 220 V, 970 rpm, 100 A DC separately excited motor has an armature resistance of 0.05Ω . It is braked by plugging from an initial speed of 1000 rpm. Calculate: (i) Resistance to be placed in the armature circuit to limit braking current to twice the full load. (ii) Braking torque. (iii) Torque required when speed fallen to zero.								

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	Analyze the induction motor performance when it is fed from a non-sinusoidal voltage supply.	CO4	PO4	10
	b)	With a neat sketch demonstrate the rotor resistance starter and auto transformer starter.	CO4	PO1	10
UNIT - IV					
5	a)	Explain V/F control with relevant characteristics and also explain what is necessary of maintaining the V/F ratio constant	CO4	PO3	10
	b)	Demonstrate the control of the induction motor by using the current source inverter.	CO4	PO1	10
OR					
6	a)	Demonstrate the control of the induction motor by using the voltage source inverter.	CO4	PO3	10
	b)	Define and explain slip power recovery and explain static Scherbius drive.	CO4	PO3	10
UNIT - V					
7	a)	With a neat sketch explain the construction and working principle of a switched reluctance motor.	CO2	PO1	10
	b)	With a neat sketch explain different types of rolling mills.	CO2	PO1	10
