

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 19EE6PE3VL

Max Marks: 100

Course: Circuit Design using VLSI

Date: 17.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks															
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Using the table given, plot the drain characteristics (For $V_{ds}=1.5V$) for the NMOS enhancement transistor and indicate the 3 regions of operations.	<i>CO2</i>	<i>PO2</i>	06														
			<table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th>$V_{ds}(V)$</th><th>$I_{ds}(uA)$</th></tr> <tr> <td>0</td><td>0</td></tr> <tr> <td>0.5</td><td>30</td></tr> <tr> <td>1</td><td>100</td></tr> <tr> <td>1.5</td><td>220</td></tr> <tr> <td>2</td><td>400</td></tr> <tr> <td>2.5</td><td>620</td></tr> </table>	$V_{ds}(V)$	$I_{ds}(uA)$	0	0	0.5	30	1	100	1.5	220	2	400	2.5	620			
	$V_{ds}(V)$	$I_{ds}(uA)$																		
0	0																			
0.5	30																			
1	100																			
1.5	220																			
2	400																			
2.5	620																			
	b)	Draw speed /power performance devices used in of VLSI technology.	<i>CO1</i>	<i>PO1</i>	05															
	c)	List the steps involved in fabrication of NMOS transistor. Illustrate with neat diagram the fabrication.	<i>CO1</i>	<i>PO1</i>	09															
UNIT - II																				
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Illustrate the relationship between I_{ds} versus V_{ds} of a MOS under Linear and Saturation conditions.	<i>CO2</i>	<i>PO2</i>	08														
		b)	Derive the expression for Z_{pu}/Z_{pd} ratio for an NMOS inverter driven by another NMOS Inverter.	<i>CO2</i>	<i>PO2</i>	08														
		c)	What are the alternate forms of Pull-Ups? Which Pull Up is best suited for all applications in VLSI designs?	<i>CO1</i>	<i>PO1</i>	04														

UNIT - III					
3	a)	Consider the NMOS inverter as shown. Consider the capacitance at the output of Inverter 1 as $4 C_g$ and Load capacitance $C_L = 16 C_g$. Calculate The total delay. Neglect stray capacitance.	CO2	PO2	06
	b)	Draw the stick diagram and Mask layout of a 4:1 NMOS inverter in NMOS design style.	CO2	PO1	06
	c)	Derive the expression for Cascaded inverters as drivers for a CMOS inverter. What is the value of “f” in cascaded inverters which will minimize the overall delay.	CO2	PO2	08
UNIT - IV					
4	a)	Realize with the help of circuit diagram, stick diagram and truth table a two Input NOR gate using i) NMOS ii) CMOS	CO3	PO1	10
	b)	Derive the scaling factor for the following parameters in combined scaling: i) Gate Delay ii) Saturation Current iii) Area capacitance iv) Power speed product v) Maximum Frequency of operation	CO3	PO2	10
OR					
5	a)	Derive the scaling factor for the following parameters in combined scaling: i) Energy stored in gate capacitance ii) Gate Capacitance iii) Current Density	CO3	PO2	06
	b)	Derive the expression for scaling of substrate doping concentration and width of depletion layer as applied to scaling factor.	CO3	PO2	08
	c)	Realize with the help of circuit diagram, stick diagram and truth table a two Input NAND gate using NMOS transistor	CO3	PO1	06
UNIT - V					
6	a)	Explain Pseudo NMOS logic and derive the expression for Z_{pu}/Z_{pd} .	CO4	PO1	10

	b)	Describe Dynamic storage. Illustrate with stick diagrams the NMOS & CMOS i) Basic inverting dynamic storage cells ii) Basic non- inverting dynamic storage cells	CO4	PO1	10
		OR			
7	a)	What are the various types of CMOS logic. Explain with block/circuit diagram, i) clocked CMOS ii) CMOS domino logic	CO4	PO1	10
	b)	Explain with circuit diagram and stick diagram the working of a basic one bit cell NMOS parity generator.	CO4	PO2	10

B.M.S.C.E. - EVEN SEM 2022-23