

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE6PCAPD

Max Marks: 100

Course: Advanced Power Electronics and Electric Drives

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Name the major parts of an electrical drive and briefly describe their function.	<i>CO1</i>	<i>PO2</i>	05
	b)	State and explain the fundamental torque equation of an electrical drive.	<i>CO1</i>	<i>PO2</i>	05
	c)	Discuss the nature and classification of load torques. How do they affect the drive selection and performance?	<i>CO1</i>	<i>PO2</i>	10
OR					
2	a)	List the advantages and disadvantages of using electrical drives over mechanical drives.	<i>CO1</i>	<i>PO2</i>	05
	b)	Differentiate between steady-state stability and transient stability in drives with neat sketch.	<i>CO1</i>	<i>PO2</i>	05
	c)	Describe multi-quadrant operation with suitable examples and diagrams	<i>CO1</i>	<i>PO2</i>	10
UNIT - II					
3	a)	Compare and contrast the methods of starting and braking in DC motor drives.	<i>CO2</i>	<i>PO1, PO2</i>	05
	b)	Explain the need for controlled rectifiers in DC drive systems and mention its applications.	<i>CO2</i>	<i>PO1, PO2</i>	05
	c)	Explain the operation of a single-phase fully controlled rectifier-fed DC motor drive with a neat circuit diagram and relevant waveforms.	<i>CO2</i>	<i>PO1, PO2</i>	10
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	4	a)	What are the advantages of using a dual converter for DC motor control? Explain briefly.	CO2	PO1, PO2	05
		b)	Discuss the torque-speed characteristics of a separately excited DC motor with neat sketch.	CO2	PO1, PO2	05
		c)	Describe in detail the chopper control of a separately excited DC motor. Mention types of choppers and their applications.	CO2	PO1, PO2	10
	UNIT - III					
	5	a)	Define slip regulation and state its importance in induction motor control.	CO3	PO3	05
		b)	Write a short note on Kramers drive used in speed control of induction motors.	CO3	PO3	05
		c)	Explain the basic concept of SRM motor control with neat sketch	CO3	PO3	10
	OR					
	6	a)	Explain the basic concept of BLDC motor control with neat sketch	CO3	PO3	05
		b)	Compare VSI-fed and CSI-fed induction motor drives. Include their working principles and applications.	CO3	PO3	05
		c)	Explain self-control and separate control modes of synchronous motor drives with neat sketch. How do they differ?	CO3	PO3	10
	UNIT - IV					
	7	a)	Write a short note on voltage control of a three-phase inverter.	CO4	PO1	05
		b)	What is the purpose of harmonic reduction in PWM techniques? Explain the concept of Selective Harmonic Elimination (SHE) in PWM	CO4	PO1	05
		c)	Describe the principle and implementation of Space Vector PWM and discuss its advantages over traditional SPWM.	CO4	PO1	10
	OR					
	8	a)	Illustrate the concept of pulse placement in multiple-pulse modulation.	CO4	PO1	05
		b)	What is modified SPWM? List its benefits over conventional SPWM.	CO4	PO1	05
		c)	Explain in detail the selective harmonic elimination (SHE) technique with the help of suitable equations and switching angles.	CO4	PO1	10
	UNIT - V					
	9	a)	Define EMI and EMC. How are they related in power electronic systems?	CO5	PO2	05

		b)	Describe the concept of conducted and radiated EMI with examples.	CO5	PO2	05
		c)	Describe the various EMI reduction techniques, including filtering, shielding, grounding, and layout strategies.	CO5	PO2	10
			OR			
10		a)	Differentiate between common mode and differential mode noise.	CO5	PO2	05
		b)	Explain briefly EMI-induced failure mechanisms in power electronic equipment. How can system design be improved to enhance EMC performance?	CO5	PO2	05
		c)	Discuss the standards applicable to EMI/EMC testing for power electronic systems. How are these tests conducted?	CO5	PO2	10

B.M.S.C.E. - EVEN SEM 2024-25