

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

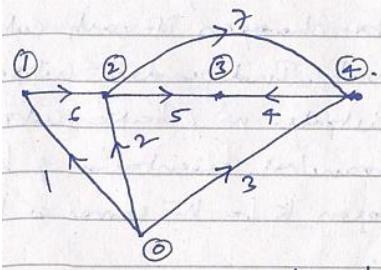
Autonomous Institute Affiliated to VTU

## June 2025 Semester End Main Examinations

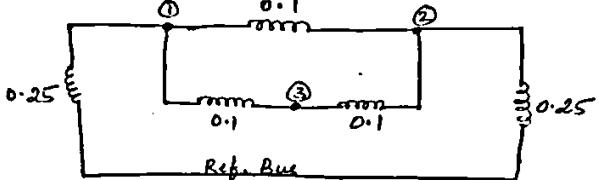
**Programme: B.E.**

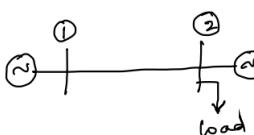
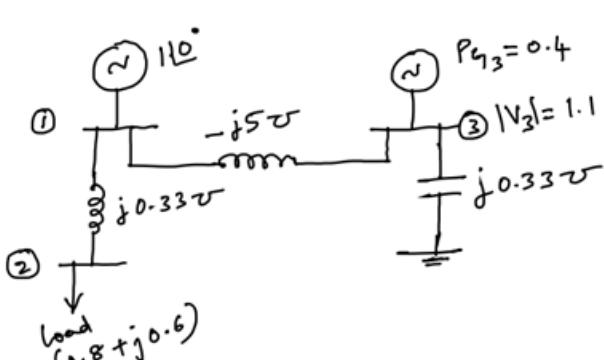
**Branch: Electrical and Electronics Engineering**

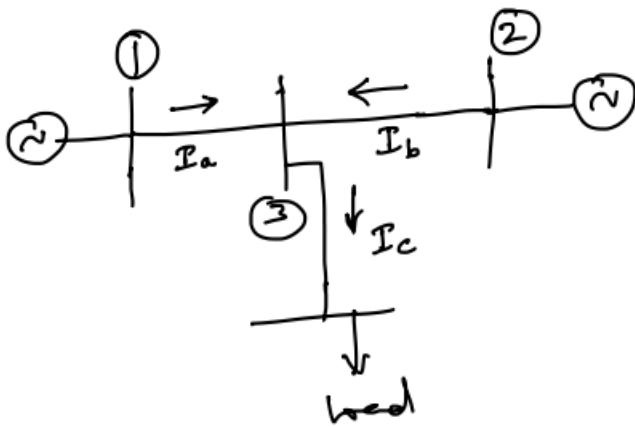
**Course Code: 22EE6PCCAP**


**Course: Computer Applications in Power Systems**

**Semester: VI**


**Duration: 3 hrs.**



**Max Marks: 100**


**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b>                                                                                           |    |                                                                                                                                                                                                                                                                                 |  | <b>CO</b> | <b>PO</b> | <b>Marks</b> |
|-----------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------|-----------|--------------|
| 1                                                                                                         | a) | Explain the following terms in network topology with an example<br>i. Tree      ii. Basic loops      iii. Basic cut-sets                                                                                                                                                        |  | CO1       | PO1       | <b>06</b>    |
|                                                                                                           | b) | Derive an expression for formation of bus admittance matrix ( $\mathbf{Y}_{\text{BUS}}$ ) by singular transformation.                                                                                                                                                           |  | CO1       | PO1       | <b>06</b>    |
|                                                                                                           | c) | For the data shown in Table 1. (c), Obtain $\mathbf{Y}_{\text{bus}}$ by inspection method.                                                                                                                                                                                      |  | CO1       | PO2       | <b>08</b>    |
| Table 1. (c)                                                                                              |    |                                                                                                                                                                                                                                                                                 |  |           |           |              |
| <b>OR</b>                                                                                                 |    |                                                                                                                                                                                                                                                                                 |  |           |           |              |
| 2                                                                                                         | a) | How a off-nominal transformer is modelled in formation of $\mathbf{Y}_{\text{bus}}$ .                                                                                                                                                                                           |  | CO1       | PO1       | <b>10</b>    |
|                                                                                                           | b) | The oriented connected graph of a system is shown in Fig. 2. (b)<br>Take ground as reference. Determine the following:<br>i. Bus incidence matrix (A)<br>ii. Branch-path incidence matrix (K)<br>iii. Basic cut-set incidence matrix (B)<br>iv. Basic loop incidence matrix (C) |  | CO1       | PO2       | <b>10</b>    |
| <br><b>Fig. 2. (b)</b> |    |                                                                                                                                                                                                                                                                                 |  |           |           |              |
| <b>UNIT - II</b>                                                                                          |    |                                                                                                                                                                                                                                                                                 |  |           |           |              |
| 3                                                                                                         | a) | Obtain the generalized algorithm expression for bus impedance matrix elements when a link is added to the partial network.                                                                                                                                                      |  | CO2       | PO1       | <b>10</b>    |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|                   | b)     | <p>For the data given in Table 3. (b), obtain <math>Y_{bus}</math> by singular transformation method. Consider Bus 1 as reference bus.</p> <table border="1"> <thead> <tr> <th>Element Number</th><th>Buses</th><th><math>Z</math> (pu)</th><th>Mutual <math>Z</math> (pu)</th></tr> </thead> <tbody> <tr> <td>1</td><td>1-2</td><td><math>j 0.2</math></td><td></td></tr> <tr> <td>2</td><td>2-3</td><td><math>j 0.4</math></td><td><math>j 0.1 (1)</math></td></tr> <tr> <td>3</td><td>1-3</td><td><math>j 0.6</math></td><td><math>j 0.1 (1)</math></td></tr> </tbody> </table> <p>Table 3. (b)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Element Number    | Buses      | $Z$ (pu)       | Mutual $Z$ (pu) | 1  | 1-2 | $j 0.2$ |   | 2               | 2-3 | $j 0.4$ | $j 0.1 (1)$     | 3 | 1-3 | $j 0.6$         | $j 0.1 (1)$ | <i>CO2</i> | <i>PO2</i>      | <b>10</b> |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|-------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|----------------|-----------------|----|-----|---------|---|-----------------|-----|---------|-----------------|---|-----|-----------------|-------------|------------|-----------------|-----------|---|-----------------|---------|--------|--------|------------|---|----|----|-------------------|---|-----|-------|----|---|-------|-----|----|---|-----|-------|----|--|--|--|
| Element Number    | Buses  | $Z$ (pu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mutual $Z$ (pu)   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 1                 | 1-2    | $j 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 2                 | 2-3    | $j 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $j 0.1 (1)$       |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 3                 | 1-3    | $j 0.6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $j 0.1 (1)$       |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|                   |        | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 4                 | a)     | Derive an expression for formation of bus admittance matrix ( $Y_{bus}$ ) by singular transformation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>CO2</i>        | <i>PO1</i> | <b>08</b>      |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|                   | b)     | The three-bus network is shown in Fig.4. (b) Determine the bus impedance matrix using <b>ZBUS</b> building algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>CO2</i>        | <i>PO2</i> | <b>12</b>      |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|                   |        | Fig. 4. (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|                   |        | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 5                 | a)     | With the help of a flow chart, explain the Gauss-Seidel method of load flow analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>CO3</i>        | <i>PO2</i> | <b>10</b>      |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|                   | b)     | The following is the transmission line data for a load flow study:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>CO3</i>        | <i>PO3</i> | <b>10</b>      |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|                   |        | <table border="1"> <thead> <tr> <th colspan="2">Transmission Line</th> <th>Impedance (pu)</th> </tr> <tr> <th>From</th> <th>To</th> <th></th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2</td> <td><math>0.05 + j 0.15</math></td> </tr> <tr> <td>1</td> <td>3</td> <td><math>0.10 + j 0.30</math></td> </tr> <tr> <td>2</td> <td>3</td> <td><math>0.15 + j 0.45</math></td> </tr> <tr> <td>2</td> <td>4</td> <td><math>0.10 + j 0.30</math></td> </tr> <tr> <td>3</td> <td>4</td> <td><math>0.05 + j 0.15</math></td> </tr> </tbody> </table> <p>The schedule of active (P) and reactive (Q) powers are as follows:</p> <table border="1"> <thead> <tr> <th>Bus No.</th> <th>P (pu)</th> <th>Q (pu)</th> <th><math> V </math> (pu)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>--</td> <td>--</td> <td><math>1.04 \angle 0^0</math></td> </tr> <tr> <td>2</td> <td>0.5</td> <td>- 0.2</td> <td>--</td> </tr> <tr> <td>3</td> <td>- 1.0</td> <td>0.5</td> <td>--</td> </tr> <tr> <td>4</td> <td>0.3</td> <td>- 0.1</td> <td>--</td> </tr> </tbody> </table> <p>Determine the bus voltages at the end of first iteration by applying Gauss-Seidel iteration method. Consider <math>\alpha = 1.2</math>.</p> | Transmission Line |            | Impedance (pu) | From            | To |     | 1       | 2 | $0.05 + j 0.15$ | 1   | 3       | $0.10 + j 0.30$ | 2 | 3   | $0.15 + j 0.45$ | 2           | 4          | $0.10 + j 0.30$ | 3         | 4 | $0.05 + j 0.15$ | Bus No. | P (pu) | Q (pu) | $ V $ (pu) | 1 | -- | -- | $1.04 \angle 0^0$ | 2 | 0.5 | - 0.2 | -- | 3 | - 1.0 | 0.5 | -- | 4 | 0.3 | - 0.1 | -- |  |  |  |
| Transmission Line |        | Impedance (pu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| From              | To     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 1                 | 2      | $0.05 + j 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 1                 | 3      | $0.10 + j 0.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 2                 | 3      | $0.15 + j 0.45$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 2                 | 4      | $0.10 + j 0.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 3                 | 4      | $0.05 + j 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| Bus No.           | P (pu) | Q (pu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ V $ (pu)        |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 1                 | --     | --                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.04 \angle 0^0$ |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 2                 | 0.5    | - 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | --                |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 3                 | - 1.0  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | --                |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 4                 | 0.3    | - 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | --                |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
|                   |        | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |            |                |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |
| 6                 | a)     | Explain the classification of different types of buses considered during power system load flow analysis. Discuss the significance of slack bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>CO3</i>        | <i>PO2</i> | <b>08</b>      |                 |    |     |         |   |                 |     |         |                 |   |     |                 |             |            |                 |           |   |                 |         |        |        |            |   |    |    |                   |   |     |       |    |   |       |     |    |   |     |       |    |  |  |  |

|                | b)         | <p>In the power system shown in Fig. 6 (b), line 1-2 has a series impedance of <math>(0.04 + j 0.12)</math> pu with negligible line charging. The generation and load data are given in the Table 6 (b). Here P and Q are in MW and MVAr respectively.</p> <table border="1"> <thead> <tr> <th>Bus</th><th>Type</th><th colspan="2">Generation</th><th colspan="2">Load</th></tr> <tr> <th></th><th></th><th>P</th><th>Q</th><th>P</th><th>Q</th></tr> </thead> <tbody> <tr> <td>1</td><td>Slack</td><td>--</td><td>--</td><td>--</td><td>--</td></tr> <tr> <td>2</td><td>PV</td><td>15</td><td>--</td><td>30</td><td>10</td></tr> </tbody> </table> <p>Table 6 (b)</p> | Bus       | Type | Generation |                | Load  |        |   |     | P               | Q        | P | Q | 1 | Slack      | --         | --         | --      | -- | 2  | PV | 15   | -- | 30  | 10  | CO3 | PO3 | <b>12</b> |  |
|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|------------|----------------|-------|--------|---|-----|-----------------|----------|---|---|---|------------|------------|------------|---------|----|----|----|------|----|-----|-----|-----|-----|-----------|--|
| Bus            | Type       | Generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Load |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                |            | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q         | P    | Q          |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| 1              | Slack      | --                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | --        | --   | --         |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| 2              | PV         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | --        | 30   | 10         |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                |            |  <p>Fig 6 (b)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                |            | <p>Slack bus voltage is <math>(1+j0)</math> pu. Voltage at bus 2 is 1.05 pu and the generator at this bus has Q generation limits between 0 and 25 MVAr. Determine its voltage at the end of first iteration, using GS method. Consider base MVA as 50.</p>                                                                                                                                                                                                                                                                                                                                                                                                             |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                |            | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| 7              | a)         | Draw the flow-chart of Newton-Raphson method of load flow analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO4       | PO2  | <b>08</b>  |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                | b)         | Line data and Bus data are shown in Table 7. (b), obtain voltage at bus 2 at the end of first iteration using FDLF method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO4       | PO4  | <b>12</b>  |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                |            | <table border="1"> <thead> <tr> <th colspan="3">Line Data</th> </tr> <tr> <th>Element Number</th> <th>Buses</th> <th>Z (pu)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>1-2</td> <td><math>0.02 + 0.08 i</math></td> </tr> </tbody> </table> <table border="1"> <thead> <tr> <th colspan="4">Bus Data</th> </tr> <tr> <th>Bus Number</th> <th><math>P_i</math> (pu)</th> <th><math>Q_i</math> (pu)</th> <th>Voltage</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>--</td> <td>--</td> <td>1.06</td> </tr> <tr> <td>2</td> <td>0.2</td> <td>0.4</td> <td>--</td> </tr> </tbody> </table> <p>Table 7. (b)</p>                                                       | Line Data |      |            | Element Number | Buses | Z (pu) | 1 | 1-2 | $0.02 + 0.08 i$ | Bus Data |   |   |   | Bus Number | $P_i$ (pu) | $Q_i$ (pu) | Voltage | 1  | -- | -- | 1.06 | 2  | 0.2 | 0.4 | --  |     |           |  |
| Line Data      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| Element Number | Buses      | Z (pu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| 1              | 1-2        | $0.02 + 0.08 i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| Bus Data       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| Bus Number     | $P_i$ (pu) | $Q_i$ (pu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Voltage   |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| 1              | --         | --                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.06      |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| 2              | 0.2        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | --        |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                |            | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
| 8              | a)         | With assumptions and flow chart explain FDLF load flow analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO4       | PO2  | 08         |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                | b)         | For a power system shown in Fig 8 (b) obtain Jacobian elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO4       | PO4  | 12         |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |
|                |            | <p>Fig 8(b)</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |      |            |                |       |        |   |     |                 |          |   |   |   |            |            |            |         |    |    |    |      |    |     |     |     |     |           |  |

| UNIT – V                                                                             |    |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |           |
|--------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
| 9                                                                                    | a) | Deduce an expression for transmission loss and its B-coefficients in terms of plant generation capacities for two units delivering a load                                                                                                                                                                                                                                                                                    | CO5 | PO2 | <b>10</b> |
|                                                                                      | b) | The operating fuel cost function of three generator units are given as:<br>$C_1 = 0.004 P_1^2 + 7.2 P_1 + 350$ ₹/hr<br>$C_2 = 0.0025 P_2^2 + 7.3 P_2 + 500$ ₹/hr<br>$C_3 = 0.003 P_3^2 + 6.74 P_3 + 600$ ₹/hr<br>The demand is 450 MW. The load is equally shared by three generator units. Determine the following:<br>i. Economic operating schedule<br>ii. Corresponding total cost of generation<br>iii. Saving obtained | CO5 | PO3 | <b>10</b> |
| <b>OR</b>                                                                            |    |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |           |
| 10                                                                                   | a) | Deduce the condition for optimal load dispatch considering transmission losses in a system.                                                                                                                                                                                                                                                                                                                                  | CO5 | PO2 | <b>10</b> |
|                                                                                      | b) | Obtain B coefficients for the system shown in Fig 10 (b). (take up to 3 decimals)<br>$I_a = 1\angle 0^\circ \text{ pu}$ $Z_a = 0.16\angle 80^\circ \text{ pu}$<br>$I_b = 0.8\angle 0^\circ \text{ pu}$ $Z_b = 0.12\angle 75^\circ \text{ pu}$<br>$I_c = 1\angle 0^\circ \text{ pu}$ $Z_c = 0.18\angle 75^\circ \text{ pu}$<br>Take $V_1 = 1.2\angle 0^\circ \text{ pu}$                                                      | CO5 | PO3 | <b>10</b> |
|  |    |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |           |
| Fig 10 (b)                                                                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |           |

\*\*\*\*\*