

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE6PCCAP

Course: Computer Applications in Power Systems

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I								CO	PO	Marks			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What is primitive network? Explain with circuit and equations the significance of it in both admittance and impedance forms.							CO1	PO1	06			
		b)	Bus incidence matrix of 8- elements and 5- nodes system is given in Table 1(b). Obtain element node incidence matrix and oriented graph.							CO1	PO1	06			
				1	0	0	0	-1	0	0	0	1			
				0	0	0	1	0	0	-1	-1				
			0	1	0	0	1	1	0	0					
			0	0	1	0	0	-1	1	0					
			Table 1(b)												
		c)	For a given network shown in Table 1. (c), Obtain Ybus by inspection method.							CO4	PO4	08			
			Element Number	Buses (p-q)	Zpq (pu)			Line charging admittance (Ysh) (pu)	Off-nominal turns ratio (a)						
			1	1-2	$0.2 - j0.6$			$j0.20$	--						
			2	1-3	$0.10 - j0.5$			$j0.50$	--						
			3	2-3	$0.15 - j0.3$			--	0.95						
			4	1-3	$0.25 - j0.15$			$j0.25$	--						
			Table 1.(c)												
		UNIT - II													
2	a)	Obtain generalized algorithm equations for finding the elements of bus impedance matrix, when a branch element is added to its partial network.								CO2	PO2	08			

	b)	<p>For the network shown in figure 2(b). Form Ybus using singular transformation method. select ground as reference</p> <table border="1"> <thead> <tr> <th>Elements</th><th>Self-impedance</th><th>Mutual impedance</th></tr> </thead> <tbody> <tr> <td>Gen A</td><td>$j 0.25$</td><td></td></tr> <tr> <td>Gen B</td><td>$j 0.25$</td><td></td></tr> <tr> <td>Gen C</td><td>$j 0.25$</td><td></td></tr> <tr> <td>Line A-B</td><td>$j 0.13$</td><td></td></tr> <tr> <td>Line B-C (N)</td><td>$j 0.22$</td><td></td></tr> <tr> <td>Line B-C (S)</td><td>$j 0.22$</td><td>Line B-C (N) $j0.48$</td></tr> <tr> <td>Line C-D</td><td>$j 0.11$</td><td></td></tr> </tbody> </table> <p>Table 2. (b).</p> <p>Figure 2. (b).</p>	Elements	Self-impedance	Mutual impedance	Gen A	$j 0.25$		Gen B	$j 0.25$		Gen C	$j 0.25$		Line A-B	$j 0.13$		Line B-C (N)	$j 0.22$		Line B-C (S)	$j 0.22$	Line B-C (N) $j0.48$	Line C-D	$j 0.11$		CO2	PO2	12								
Elements	Self-impedance	Mutual impedance																																			
Gen A	$j 0.25$																																				
Gen B	$j 0.25$																																				
Gen C	$j 0.25$																																				
Line A-B	$j 0.13$																																				
Line B-C (N)	$j 0.22$																																				
Line B-C (S)	$j 0.22$	Line B-C (N) $j0.48$																																			
Line C-D	$j 0.11$																																				
UNIT - III																																					
3	a)	<p>Following is the data given for load flow solution.</p> <table border="1"> <thead> <tr> <th>Bus code</th><th>Admittance values in pu</th></tr> </thead> <tbody> <tr> <td>1-2</td><td>$2 - j6$</td></tr> <tr> <td>1-3</td><td>$1 - j4$</td></tr> <tr> <td>2-3</td><td>$0.666 - j2.664$</td></tr> <tr> <td>2-4</td><td>$1 - j4$</td></tr> <tr> <td>3-4</td><td>$2 - j8$</td></tr> </tbody> </table> <p>Scheduled active and reactive powers are:</p> <table border="1"> <thead> <tr> <th>Bus code</th><th>Real power demand (MW)</th><th>Reactive power demand (MVar)</th><th>Voltage (pu)</th></tr> </thead> <tbody> <tr> <td>1</td><td>--</td><td>--</td><td>1.04</td></tr> <tr> <td>2</td><td>25</td><td>10</td><td>--</td></tr> <tr> <td>3</td><td>20</td><td>15</td><td>--</td></tr> <tr> <td>4</td><td>15</td><td>25</td><td>--</td></tr> </tbody> </table> <p>Determine the voltages at all buses at the end of first iteration using G.S method. Consider $\alpha = 1.2$. Base value as 50 MVA.</p>	Bus code	Admittance values in pu	1-2	$2 - j6$	1-3	$1 - j4$	2-3	$0.666 - j2.664$	2-4	$1 - j4$	3-4	$2 - j8$	Bus code	Real power demand (MW)	Reactive power demand (MVar)	Voltage (pu)	1	--	--	1.04	2	25	10	--	3	20	15	--	4	15	25	--	CO3	PO3	12
Bus code	Admittance values in pu																																				
1-2	$2 - j6$																																				
1-3	$1 - j4$																																				
2-3	$0.666 - j2.664$																																				
2-4	$1 - j4$																																				
3-4	$2 - j8$																																				
Bus code	Real power demand (MW)	Reactive power demand (MVar)	Voltage (pu)																																		
1	--	--	1.04																																		
2	25	10	--																																		
3	20	15	--																																		
4	15	25	--																																		

	b)	Derive an expression for load flow analysis for G.S. method. Also explain if PV bus is present in the network how it should be solved.	CO2	PO2	08																																								
		OR																																											
4	a)	Discuss different types of buses in power systems. Explain the importance of reference bus.	CO1	PO1	08																																								
	b)	Obtain bus voltages using GS load flow solution at the end of first iteration for the data shown in table 4 (b).	CO4	PO4	12																																								
		<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th colspan="4">Line Data</th> <th colspan="4">Bus Data</th> </tr> <tr> <th>SB</th> <th>EB</th> <th>R (P.U)</th> <th>X (P.U)</th> <th>BUS NO.</th> <th>P_i (P.U)</th> <th>Q_i (P.U)</th> <th>VTG (P.U)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>2</td> <td>0</td> <td>0.1</td> <td>1</td> <td>--</td> <td>--</td> <td>1.0</td> </tr> <tr> <td>1</td> <td>3</td> <td>0</td> <td>0.2</td> <td>2</td> <td>5.32</td> <td>--</td> <td>1.1</td> </tr> <tr> <td>2</td> <td>3</td> <td>0</td> <td>0.2</td> <td>3</td> <td>3.64</td> <td>0.53</td> <td>--</td> </tr> </tbody> </table> <p style="text-align: center;">Table 4 (b).</p> <p style="text-align: center;">Given $0 \leq Q_i \leq 1.70$ pu</p>	Line Data				Bus Data				SB	EB	R (P.U)	X (P.U)	BUS NO.	P _i (P.U)	Q _i (P.U)	VTG (P.U)	1	2	0	0.1	1	--	--	1.0	1	3	0	0.2	2	5.32	--	1.1	2	3	0	0.2	3	3.64	0.53	--			
Line Data				Bus Data																																									
SB	EB	R (P.U)	X (P.U)	BUS NO.	P _i (P.U)	Q _i (P.U)	VTG (P.U)																																						
1	2	0	0.1	1	--	--	1.0																																						
1	3	0	0.2	2	5.32	--	1.1																																						
2	3	0	0.2	3	3.64	0.53	--																																						
		UNIT - IV																																											
5	a)	With flow chart and assumptions explain the steps involved in FDLF method.	CO2	PO2	08																																								
	b)	For a power system shown in Fig 5(b) obtain jacobian elements.	CO4	PO4	12																																								
		Fig 5(b)																																											
		UNIT - V																																											
6	a)	Derive an expression for B co-efficients for a two generator system.in economic operations of power systems.	CO5	PO2	08																																								
	b)	<p>A two bus system, without generator limits, has been considered as shown in fig. 6 (b), where $P_{load(A)} = 400 \text{ MW}$,</p> $P_{load(B)} = 100 \text{ MW and}$ $P_{loss} = 0.08(P_{G(A)}) + 10$ $(IFC)_A = 0.06 P_{G(A)} + 4.0 \text{ Rs/MWh}$ $(IFC)_B = 0.07 P_{G(B)} + 4.0 \text{ Rs/MWh}$ <p>Find the optimal generator scheduling for each plant, total power loss and system incremental cost.</p>	CO5	PO3	12																																								

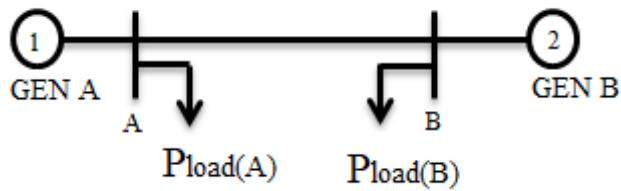


Fig. 6 (b)

OR

7 a) Derive an expression for penalty factor in economic operations of power systems including losses.

CO5 *PO2* **08**

b) Obtain B coefficients for the system shown in fig 7 (b)

$$I_a = 1 \angle 0^\circ \text{ pu} \quad Z_a = 0.05 + j0.10 \text{ pu}$$

$$I_b = 0.8 \angle 0^\circ \text{ pu} \quad Z_b = 0.05 + j0.10 \text{ pu}$$

$$I_c = 2 \angle 0^\circ \text{ pu} \quad Z_c = 0.01 + j0.10 \text{ pu}$$

Take $V_3 = 1 \angle 0^\circ \text{ pu}$

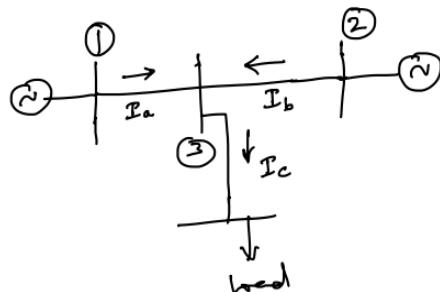


Fig 7(b)
