

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 19EE6PCMCT

Course: Modern Control Theory

Semester: VI

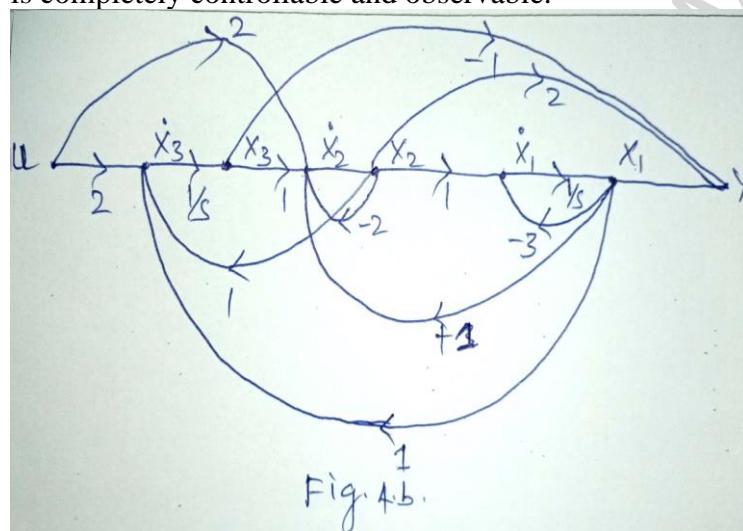
Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT - I			CO	PO	Marks
	1	a)	For the given transfer function, obtain state model using Phase variable method.	CO1	PO2	10
			$T(s) = \frac{(S + 2)(S + 3)}{S(S + 1)(S^2 + 9S + 20)}$			
		b)	Construct the state model using phase variables. If the system is described by the differential equation: -	CO1	PO2	10
			$\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 2y(t) = 5U(t)$			
			UNIT - II			
	2	a)	With an example, explain Eigen Values, Eigen Vectors, Modal matrix(m) and Vander Monde matrix (V).	CO1	PO3	10
		b)	Derive an expression of transfer function from state model and also derive state transaction matrix.	CO1	PO3	10
			UNIT - III			
	3	a)	Define Observability. Explain with an example both Kalman's test for Observability and also Gilbert's test for Observability.	CO2	PO3	10
		b)	A system represented by following state model is controllable but not observable. Show that non-observability is due to pole-zero cancellation.	CO2	PO3	10

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$


$$y(t) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} x(t)$$

OR

4 a) Define Controllability. Explain with an example both Kalman's test for Controllability and also Gilberts test for controllability.

CO2 PO3 **10**

b) Use Controllability and Observability matrices to determine whether the system represented by the signal flow graph in Fig.4.b is completely controllable and observable.

UNIT - IV

5 a) It is desired to place the closed loop poles of the following system at $S=-3$ and $S=-4$ by a state feedback controller with the control $u=-kx$. Determine the state feedback gain matrix using all the methods.

CO2 PO3 **12**

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

b) Explain State Observer and also explain the methods to find K_e .

CO2 PO3 **08**

UNIT - V					
6	a)	Explain the following (i) Deadzone (ii) Saturation (iii) Limit Cycle (iv) Relay (v) Backlash	CO2	PO3	10
	b)	Determine the kind of singularity for each of the following for each of the differential equations (i) $\ddot{y} + 3\dot{y} + 2y = 0$ (ii) $\ddot{x} + 0.5\dot{x} + 2x = 0$	CO2	PO3	10
OR					
7	a)	Describe in detail Isocline method for construction of Phase Trajectory with an example.	CO3	PO3	10
	b)	Determine the kind of singularity for each of the following for each of the differential equations (i) $\ddot{y} + 3\dot{y} + 2y = 0$ (ii) $\ddot{y} + 3\dot{y} - 10y = 0$	CO3	PO3	10
