

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July / August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 19EE6PCMCT

Course: Modern Control Theory

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Explain the concept of (i) State (ii) State variables (iii) State space (iv) state vector (v) state trajectory of a linear system	CO1	PO1	10
	b)	Obtain the state space representation in phase variable form for the system represented by $D^4y+20D^3y+45D^2y+18Dy+100y = 10D^2u+5Du+100u$ with y as output and u as input.	CO1	PO1,2	10
			UNIT - II		
2	a)	Determine the transfer matrix for the system $\begin{aligned} \dot{X}_1 &= \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 4 & 6 \\ -5 & 0 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \\ \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} &= \begin{bmatrix} 1 & -1 \\ 8 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \end{aligned}$	CO1	PO1,2	08
	b)	Obtain the eigen values, eigen vectors, modal matrix for $A = \begin{bmatrix} 4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3 \end{bmatrix}$ and prove that $M^{-1}AM = \Lambda = \text{Diagonal Matrix}$	CO1	PO1,2	12
			UNIT - III		
3	a)	State the conditions for complete controllability and complete observability. Determine the state controllability and observability of the system described by $\begin{aligned} \begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} &= \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} u(t) \text{ and } Y(t) = \\ &\quad [1 \ 0 \ 0] \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} \end{aligned}$	CO2	PO1,2	12
	b)	Determine the controllability and observability of the following state model	CO2	PO1,2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		$\dot{X} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} [X] + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u$ $y = [10 \ 5 \ 1]X$		
		OR		
4	a)	<p>State the condition for complete observability using Gilbert's test. Determine the observability using Gilbert's test for the system described by</p> $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad C = [3 \ 4 \ 1]$	CO2	PO1,2 10
	b)	<p>Define Controllability and Observability. Explain the principle of duality between controllability and observability.</p>	CO2	PO1 10
		UNIT - IV		
5	a)	<p>Consider the system $\dot{X} = AX + Bu$ and $Y = CX$, where</p> $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \quad C = [0 \ 0 \ 1].$ <p>Design a state observer so that desired eigen values are at $-3 \pm j1$ and -4.</p>	CO3	PO1,2 10
	b)	<p>Determine the state feedback gain matrix 'K' for the system $\dot{X} = AX + Bu$ where $A = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix}$; $B = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$; $C = [1 \ 0]$ using state feedback control $u = -Kx$, it is desired to have the closed loop poles at $s = -3$ and $s = -4$.</p>	CO3	PO1,2 10
		UNIT - V		
6	a)	<p>What are singular points? Explain the classification of singular points based on the location of eigen values of the system.</p>	CO3	PO1 10
	b)	<p>State the properties of non-linear system and write a short note on Jump Resonance.</p>	CO3	PO1 10
		OR		
7	a)	<p>Obtain singular points for the following systems</p> <ol style="list-style-type: none"> $\ddot{x} + 0.5\dot{x} + 2x = 0$ $\ddot{y} + 3\dot{y} + 2y = 0$ $\ddot{y} + 3\dot{y} - 10 = 0$ 	CO3	PO1,2 12
	b)	<p>Discuss the basic features of the following non-linearities</p> <ol style="list-style-type: none"> Non-linear friction On-Off controllers Backlash Deadzone 	CO3	PO1 08
