

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 19EE6PCMCT

Max Marks: 100

Course: Modern Control Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain the following with an example: State, State variables, State vector, State space,	CO2	PO2	08
	b)	Obtain state model for the electrical system shown: 	CO1	PO1	07
	c)	List the advantages of state space analysis.	CO1	PO1	05
OR					
2	a)	Determine the canonical state model of the system given by $T(s) = \frac{2(s+5)}{(s+2)(s+3)(s+4)}$	CO1	PO1	10
	b)	A feedback system has a closed-loop transfer function $\frac{Y(s)}{U(s)} = \frac{10}{s^3 + 4s^2 + 2s + 1}$ Construct the state model for this system.	CO2	PO3	10
UNIT - II					
3	a)	Derive the expression for transfer function from the state model and hence obtain the transfer function for the system with state model given as:	CO2	PO3	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as **admission**.

		$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} U$ $y = [1 \ 2] \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$			
	b)	<p>Consider a state model with matrix $A = \begin{bmatrix} 0 & 2 & 0 \\ 4 & 0 & 1 \\ -48 & -34 & -9 \end{bmatrix}$</p> <p>Determine a) Characteristic equation b) Eigen Values and c) Modal matrix. Also prove that the transformation $M^{-1}AM$ results in a diagonal matrix.</p>	CO2	PO3	10
		OR			
4	a)	<p>Find the solution of $\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} X(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} U(t)$ and $Y(t) = [1 \ 0] X(t)$</p> <p>if $X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and system is subjected to unit step input.</p>	CO2	PO3	10
	b)	<p>Find state transition matrix for $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$ using (i) Cayley Hamilton theorem (ii) Laplace Transform method.</p>	CO2	PO3	10
		UNIT - III			
5	a)	Define controllability and observability. Explain the Kalman's method of determining the same.	CO3	PO1	10
	b)	<p>Check observability using Kalman's and Gilberts test for the system given below:</p> $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$	CO3	3	10
		OR			
6	a)	<p>Find whether the system given below is controllable or not using Kalman's and Gilberts test for the system given below:</p> $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } C = [3 \ 4 \ 1]$	CO3	PO1	10
	b)	Define the duality of the system between controllability and observability concept? Develop the expression by Kalman's Method.	CO3	PO3	10

UNIT - IV					
7	a)	Consider the system defined by $\dot{X} = AX + BU$ where $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, $C = [0 \ 0 \ 1]$ Design an observer such that the eigen values are placed at $S = -3 \pm j1$, $s = -4$. Determine the state observer gain matrix using Ackerman's formula.	<i>CO4</i>	<i>PO3</i>	10
	b)	Explain the concept of state controller and observer.	<i>CO4</i>	<i>PO3</i>	10
OR					
8	a)	Explain the different methods of pole placement.	<i>CO1</i>	<i>PO1</i>	10
	b)	Design a full order state observer using (i) Direct substitution method (ii) Ackermann's method. Assume that the desired eigenvalues of the observer matrix are -5, -5 for the system given as $\dot{X} = \begin{bmatrix} -1 & 1 \\ 1 & 2 \end{bmatrix} X(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} U(t) \text{ and } Y(t) = [1 \ 0] X(t)$	<i>CO3</i>	<i>PO3</i>	10
UNIT - V					
9	a)	Explain the following phenomena with examples, in a non-linear system. (i) Saturation (ii) Friction (iii) Backlash (iv) Deadzone (v) Relay	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain different types of singular points.	<i>CO2</i>	<i>PO1</i>	10
OR					
10	a)	What is intentional nonlinearity? Why is it used? Give one example. Compare intentional nonlinearity with inherent nonlinearity.	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain the phase plane method of stability analysis of nonlinear systems.	<i>CO1</i>	<i>PO1</i>	10
