

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: ELECTRICAL & ELECTRONICS ENGG.

Duration: 3 hrs.

Course Code: 19EE6PCMCT

Max Marks: 100

Course: Modern Control Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	List the limitations of classical control theory and state how it is overcome in state space analysis.	CO1	PO1	06
	b)	Obtain the state space model of an armature-controlled DC motor	CO1	PO1	08
	c)	Determine the state model of the given electrical system. Given $R = 5 \Omega$, $L = 0.1H$, $C = 0.01\mu F$.	CO1	PO2	06
OR					
2	a)	Explain linearization of state equations.	CO1	PO1	08
	b)	Obtain the canonical state model for the given transfer function $\frac{Y(s)}{U(s)} = \frac{10}{s^3 + 4s^2 + 2s + 1}$	CO1	PO2	08
	c)	Define: State, state variable, state space and state vector.	CO1	PO1	04
UNIT - II					
3	a)	Consider a state model with matrix $A = \begin{bmatrix} 0 & 2 & 0 \\ 4 & 0 & 1 \\ -48 & -34 & -9 \end{bmatrix}$ Determine a) Characteristic equation b) Eigen Values and c) Modal matrix. Also, prove that the transformation $M^{-1}AM$ results in a diagonal matrix.	CO1	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Find the solution of $X = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} X(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} U(t)$ and $Y(t) = [1 \ 0] X(t)$ if $X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and system is subjected to unit step input.	CO1	PO2	10
		OR			
4	a)	Find e^{At} for $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$ using (i) Cayley- Hamilton theorem (ii) Laplace Transform method	CO1	PO2	10
	b)	Compute the solution of the following state equation: $\dot{X} = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix} X; X(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	CO1	PO2	10
		UNIT - III			
5	a)	Define controllability and observability. Discuss the duality Principle of controllability and observability.	CO2	PO1	10
	b)	Evaluate controllability and observability of the state model: $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix}, B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix}, C = [0 \ 0 \ 1]$	CO2	PO2	10
		OR			
6	a)	Determine controllability of the given system using Kalmans test and Gilberts test. $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} U$	CO2	PO2	10
	b)	Find whether the system given below is observable or not using Kalman's and Gilberts test for the system given below: $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \text{ and } C = [3 \ 4 \ 1]$	CO2	PO2	10
		UNIT - IV			
7	a)	Consider the system defined by $\dot{X} = AX + BU$ where $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 2 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, C = [0 \ 0 \ 1]$ Design an observer such that the eigen values are placed at $S = -3 \pm 1, s = -4$. Determine the state observer gain matrix using Ackerman's formula	CO2	PO2	10

		b)	What is pole placement by state feedback? Explain. Also define the necessary and sufficient condition for arbitrary pole placement.	CO2	PO1	10
			OR			
	8	a)	Consider the system defined by $\dot{X} = AX + BU$ where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ by using the state feedback control $u = -kx$, it is desired to have the closed loop poles at $s = -2 \pm j4$, $s = -10$. Determine the state feedback gain matrix K using transformation matrix.	CO2	PO2	10
		b)	Explain the different methods of pole placement.	CO2	PO1	10
			UNIT - V			
	9	a)	What is intentional nonlinearity? Why is it used? Compare intentional nonlinearity with inherent nonlinearity.	CO3	PO1	10
		b)	Explain the following phenomena with examples, in a non-linear system. (i) Saturation (ii) Friction (iii) Backlash (iv) Deadzone (v) Relay	CO3	PO1	10
			OR			
	10	a)	What are singular points? Explain the different singular points w.r.t. the stability of a nonlinear system.	CO3	PO1	10
		b)	What are phase trajectories, Explain the method of constructing the same using Delta method	CO3	PO1	10
