

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 19EE6PCMCT

Course: Modern Control Theory

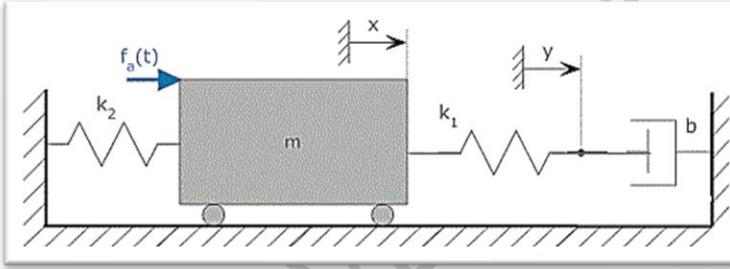
Semester: VI

Duration: 3 hrs.

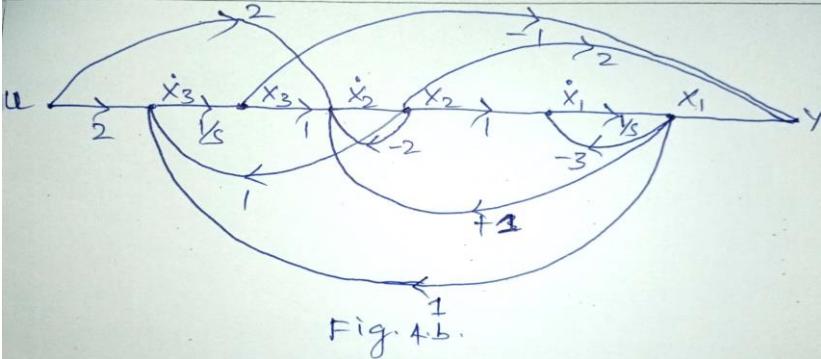
Max Marks: 100

Date: 12.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	List the draw backs of the transfer function model.	<i>CO1</i>	<i>PO1</i>	04
	b)	 <p>Fig 1b) Derive the state space model of the system shown in Fig 1b). The input is f_a and the output is y.</p>	<i>CO1</i>	<i>PO1</i>	06
	c)	A feedback system has a closed loop transfer function given by $\frac{Y(S)}{U(S)} = \frac{(s+2)(s+3)}{s(s+1)(s^2+9s+20)}$. Obtain the state models for this system in (i) direct decomposition method. ii) Akermann's Formulae.	<i>CO1</i>	<i>PO1</i>	10
UNIT - II					
2	a)	System matrix A is given as $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ -3 & 3 & 5 \end{bmatrix}$ Obtain the modal matrix, find $M^{-1}AM$ and comment on its nature.	<i>CO1</i>	<i>PO2</i>	10
	b)	State any six properties of state transition matrix and also define Eigen Values, Eigen Vectors with an example.	<i>CO1</i>	<i>PO2</i>	10
UNIT - III					
3	a)	Check the controllability and observability of the following representation using Kalman's test. $\dot{x}(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u ; y = [1 \ 1 \ 0] x(t).$	<i>CO2</i>	<i>PO3</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Consider a system defined by</p> $\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$ <p>It is desired to place eigen values at $s = -3$ and $s = -5$ by using state feedback control $u = -kx$. Determine the feedback gain matrix K. Apply i) Direct substitution method ii) Ackermann's Formulae.</p>	CO2	PO3	10
		OR			
4	a)	<p>Consider the system described by the transfer function</p> $\frac{Y(S)}{U(S)} = \frac{s+2}{s^3 + 9s^2 + 24s + 20}$ <p>Obtain controllable canonical form and check its observability</p>	CO2	PO3	10
	b)	<p>Use Controllability and Observability matrices to determine whether the system represented by the signal flow graph in Fig.4.b is completely controllable and observable.</p> 	CO2	PO3	10
		UNIT - IV			
5	a)	<p>It is desired to place the closed loop poles of the following system at $S = -3$ and $S = -4$ by a state feedback controller with the control $u = -kx$. Determine the state feedback gain matrix using all the methods.</p> $\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u$ $y = [1 \ 0] x$	CO2	PO3	10
	b)	<p>Prove that the necessary and sufficient condition for arbitrary pole placement in a system is completely state controllable.</p>	CO2	PO3	10
		UNIT - V			
6	a)	<p>Discuss the following as applied to non linear systems:</p> <ol style="list-style-type: none"> Frequency amplitude dependence Jump resonance Limit cycles 	CO3	PO3	10

	b)	Determine the kind of singularity for each of the following for each of the differential equations (i) $\ddot{y} + 3\dot{y} + 2y = 0$ (ii) $\ddot{x} + 0.5\dot{x} + 2x = 0$	CO3	PO3	10
		OR			
7	a)	Discuss the following as applied to physical systems: (i) Saturation (ii) Friction (iii) Backlash (iv) Relay nonlinearity	CO3	PO3	12
	b)	Describe in detail Isocline method for construction of Phase Trajectory with an example.	CO3	PO3	08

B.M.S.C.E. - EVEN SEM 2022-23