

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE6PCPE2

Course: Power Electronics - 2

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Express the supply current $i_s(t)$ of a single-phase full converter using SCRs by Fourier series. Given $i_s = I_a$ from α to $(\pi + \alpha)$ and $i_s = -I_a$ from $(\pi + \alpha)$ to $(2\pi + \alpha)$ where α is the delay angle. Hence show that RMS value of fundamental current is $0.9I_a$.	CO2	PO1, PO2	10
	b)	A three phase fully controlled converter is operated from a three-phase star connected 200V, 50Hz supply. The load resistance is $R_L = 10 \Omega$. Calculate i) Maximum possible output voltage. ii) Delay angle α to obtain 50% of maximum possible output voltage. iii) Average load current with the delay angle as in (ii). iv) RMS value of the output voltage for the same delay angle	CO2	PO1, PO2	10
OR					
2	a)	List and define the performance parameters of a single-phase bridge-controlled rectifier	CO2	PO1, PO2	10
	b)	A three-phase full converter charges a battery from a three-phase supply of 230 V, 50 Hz. The battery EMF is 200 V and its internal resistance is 0.5 ohm. The charging current is constant at 20 A. Compute the firing angle delay and input supply power factor.	CO2	PO1, PO2	10
UNIT - II					
3	a)	Illustrate the principle of operation of a step-down converter. Show the effect of duty cycle (k) on the effective resistance seen by the source.	CO1	PO2	08
	b)	A DC-DC boost regulator has $V_s = 5V$, $V_a = 15V$ and average current through the load is 0.5A. Given inductor ripple current is 0.9A and capacitor voltage ripple is 60mV compute the values of L and C of the converter. Draw the circuit and insert the values on it. Given switching frequency is 10kHz.	CO2	PO1, PO2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Explain generation of gating signal (duty cycle) for DC-DC converter with the help of waveforms.	CO3	PO2	04
		OR			
4	a)	Draw the circuit of a DC-DC buck regulator. Explain its operation with the help of waveforms?	CO3	PO2	10
	b)	A buck-boost regulator has an input voltage of $V_s=12V$, Duty cycle $k=0.25$, switching frequency $f_s=25\text{kHz}$ with an average load current of 1.25A . Given $L= 150 \mu\text{H}$ and $C = 220 \mu\text{F}$ calculate i) the average output voltage ii) the peak to peak output voltage ripple iii) the peak-peak ripple current of the inductor iv) the peak current of the transistor.	CO2	PO1, PO2	10
		UNIT - III			
5	a)	Define the following parameters of inverters: i) Total Harmonic distortion ii) Distortion Factor iii) Harmonic Factor iv) Lowest order Harmonic	CO2	PO1, PO2	10
	b)	Draw the circuit diagram of a three-phase full bridge inverter using IGBT with DC supply voltage V_s . Give the switches state table along with the values of line-to-line voltages for each state.	CO3	PO2	10
		OR			
6	a)	Show that RMS value of fundamental output voltage of a single-phase full bridge inverter is $0.9V_s$ where V_s is the DC supply voltage.	CO2	PO1, PO2	10
	b)	Draw the circuit diagram of a three-phase bridge inverter using MOSFET switches. Sketch the gating signal for each switch for 180-degree conduction mode and draw the line-to-line voltage waveforms. Take supply DC voltage as V_s .	CO3	PO2	10
		UNIT - IV			
7	a)	What are the limitations of resonant converters? List the applications of DC-DC resonant converters.	CO4	PO3	05
	b)	What are the advantages of multilevel inverters? Explain the basic concept of multilevel inverters.	CO1	PO2	05
	c)	Explain the working of DC-DC M-type ZCS resonant converter with circuit diagram and waveforms	CO4	PO3	10
		OR			
8	a)	Describe the operation of a ZVS resonant converter with the help of neat circuit diagram and wave forms in all the modes of its operation.	CO4	PO3	10
	b)	Explain the concept of multilevel inverters and mention their applications	CO4	PO3	06
	c)	What are the types of resonant tank circuits?	CO4	PO3	04

UNIT - V					
9	a)	Explain the working of a single-phase full converter fed separately excited DC motor drive.	<i>CO1</i>	<i>PO2</i>	10
	b)	Explain the concept behind Thyristor switched Reactor (TCR) and Thyristor Switched Capacitor (TCS). Mention their applications.	<i>CO1</i>	<i>PO2</i>	10
OR					
10	a)	With the help of a neat block diagram explain the operation of Uninterruptable power supply.	<i>CO1</i>	<i>PO2</i>	10
	b)	With the help of a neat circuit diagram explain the working of a fly back converter.	<i>CO1</i>	<i>PO2</i>	10

B.M.S.C.E. - ODD SEM 2024-25