

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE6PCPE2

Course: Power Electronics - 2

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	UNIT - I			CO	PO	Marks
	1	a)	With the help of a neat diagram and associated waveforms, explain the operation of a single-phase full wave controlled converter with (i) Resistive load (ii) Inductive load	CO2	PO1, PO2	10
		b)	Explain the operation of a three-phase, fully-controlled bridge converter with associated waveforms.	CO2	PO1, PO2	10
		UNIT - II				
	2	a)	Draw the schematics of step-down and step-up DC to DC convertors. Derive expression for output voltage in terms of a duty cycle for a step-down and step-up converter.	CO2	PO1, PO2	10
		b)	A step-down dc chopper has a resistive load of $R = 15 \text{ ohm}$ and input voltage $E_{dc} = 200 \text{ V}$. When the chopper remains ON, its voltage drop is 2.5 V. The chopper frequency is 1 kHz. If the duty cycle is 50%, determine: (a) Average output voltage (b) RMS output voltage (c) Chopper efficiency (d) Effective input resistance of chopper	CO3	PO1, PO2	10
		OR				
	3	a)	With the help of a neat circuit diagram and associated waveforms, discuss the operation of the Buck-Boost converter. List the advantages and disadvantages of this type of converter.	CO2	PO1, PO2	12
		b)	A DC-DC boost regulator has $V_s = 5\text{V}$, $V_a = 15\text{V}$ and average current through the load is 0.5A. Given inductor ripple current is 0.9A and capacitor voltage ripple is 60mV compute the values of L and C of the converter. Draw the circuit and insert the values on it. Given switching frequency is 10kHz.	CO2	PO1, PO2	08

UNIT - III					
4	a)	Derive the following expression for the single-phase full bridge transistorised VSI (i) RMS output voltage (ii) Instantaneous output voltage (iii) Nth harmonic component Switch voltage and current rating	CO2	PO1, PO2	10
	b)	A full-bridge inverter has a source voltage $E_{dc}=220$ V. The inverter supplies an RLC load with $R=10$ ohm and $C=52 \mu F$. The inverter frequency is 400 Hz. Determine (i) The RMS load current at fundamental frequency (ii) The RMS value of the load current (iii) The power output and (iv) The average supply current	CO2	PO1, PO2	10
OR					
5	a)	With the help of a neat circuit diagram and waveforms, explain briefly the operation of a transistorised three-phase bridge inverter with resistive load in 180° conduction mode.	CO1	PO2	10
	b)	A single-phase full-bridge inverter is operated from a 48 V Battery and supplies power to a pure resistance load of 10 Ohm. Determine (i) The fundamental output voltage and the first five harmonics (ii) RMS value by direct integration method and harmonics summation method. (iii) Output rms power and output fundamental power	CO1	PO1, PO2	10
UNIT - IV					
6	a)	With the help of neat diagram and associated waveforms, explain the operation of ZVS resonant converter.	CO3	PO2	10
	b)	With the help of neat diagram and associated waveforms, explain the operation of ZCS resonant converter.	CO3	PO2	10
UNIT - V					
7	a)	Describe the operation of on-line UPS system with the help of neat block diagram.	CO3	PO2	10
	b)	With neat circuit diagram and waveform explain the working of a single phase full converter fed DC motor.	CO3	PO2	10
