

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Electrical and Electronics Engineering

Course Code: 22EE6PCSIP

Course: Signal Processing

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Analyze and Evaluate the average power or energy of the following signals after determining whether they are Energy or Power signals. <i>i</i>). $x(n) = u(n)$, <i>ii</i>). $x(n) = e^{j[(\frac{\pi}{3})n + \frac{\pi}{2}]}$	CO1	PO1	04
		b)	Analyze and sketch the following the DT signal operation of : $x(n): \{1 -1 2 0 1 1 4\}$; 2=origin i). $x(-n-2)$; ii). $x(-2n-2)$; iii). $x(-n+3)$	CO2	PO2	06
		c)	Design an LTI system, If $x(n) = \{[1 1 0 2] (1=\text{origin})\}$ and $y(n) = \{[2 4 6 12 16 L M N] (6=\text{origin})\}$. Analyses and develop the DT convolution sum of the signal, evaluate L M & N and also verify by tabular Convolution method.	CO2	PO2	10
OR						
	2	a)	Determine the even and odd parts of the following signals a. $x(n) = 3e^{\frac{j\pi n}{5}}$ b. $x(n) = \{3, -4, 2, 0, 6, 3, 9, 5\}$ ↑	CO2	PO2	06
		b)	Analyze whether the following signals are periodic or not. If periodic, determine the fundamental period of the signal. a. $x(t) = \sin 10\pi t$ b. $x(t) = \sin \pi t u(t)$	CO2	PO2	06
		c)	Design an LTI system, which results in response $y(n)$, if the input sequence $x(n) = [1 1 1]$ and $h(n) = [1 -1 1 3 2]$ by graphical method(linear convolution). Verify the response of the system using the designed Unit impulse sequence and using short cut method	CO2	PO2	08
UNIT - II						
	3	a)	Enumerate the properties of ROC of Z - transforms	CO2	PO2	04
		b)	Evaluate & Analyses the z-transform using appropriate property: $x(n) = \frac{1}{3} (n^2 - n) \left(\frac{1}{2}\right)^{n-1} u(n-1)$	CO2	PO2	06

	c)	A long sequence is filtered through a filter of impulse response $h[n]$ to give the output $y[n]$ for the input $x[n]$. given $h[n]$ and $x[n]$ as follows, compute $y[n]$ using overlap and add method. $x(n) = [1,1,1,1,1,3,1,1,4,2,1,1,3,1,1,1]$ $h(n) = [1, -1]$. Use five-point circular convolution	CO2	PO2	10
		OR			
4	a)	Analyze and evaluate the average Power or Energy of the following signals after determining whether they are Energy or Power signals a. $x(n) = u(n)$ b. $x(n) = e^{j[(\frac{\pi}{3})n + \frac{\pi}{2}]}$ c. $x(n) = (-0.4)^n u(n)$	CO2	PO2	10
	b)	Analyze and sketch the following DT signal operation of: $x(n) = \{1 - 1 \ 2 \ 0 \ 1 \ 1 \ 4\}$; 2 = origin i) $x(-n - 2)$ ii) $x(-2n - 2)$ iii) $2x(n)$ iv) $x(-n + 3)$ v) $x(n/4)$	CO2	PO2	10
		UNIT - III			
5	a)	Develop an 8 point DIT-FFT algorithm, draw the signal flow graph. Evaluate the DFT of the following sequence: $x(n) = \{1 \ 2 \ 4 \ 8 \ 16 \ 32 \ 64 \ 128\}$, using the signal flow graph show all the intermediate results on the signal flow graph.	CO2	PO2	10
	b)	Obtain a) Direct form II b) Cascade realization with two biquadratic section realization for the system described below. $H(z) = \frac{(z - 1)(z^2 + 5z + 6)(z - 3)}{(z^2 + 6z + 5)(z^2 + 6z + 8)}$	CO2	PO2	10
		OR			
6	a)	First five points of 8-point DFT of a real valued sequence is given by $X(k) = \{0, 2+j2, -j4, 2-j2, 0\}$. Determine the remaining points. Hence Determine the sequence $x(n)$ using DIF FFT.	CO2	PO2	10
	b)	The transfer function of FIR filter is: $H(z) = (1 + 0.25z^{-1} + z^{-2})(1 + 2z^{-1} + z^{-2})$ Realize the filter using i) direct form ii) linear phase form iii) cascade form structure.	CO2	PO2	10
		UNIT - IV			
7	a)	Design butter-worth filter for the following specifications: $0.8 \leq H_a(s) \leq 1$ for $0 \leq F \leq 1000$ Hz; & $ H_a(s) \leq 0.2$ for $F \geq 5000$ Hz	CO3	PO3	10
	b)	Design the Chebyshev filter with specification: $A_p = 2.5$ dB; $\Omega_p = 20$ rad/sec; $A_s = 30$ dB; $\Omega_s = 50$ rad/sec.	CO3	PO3	10
		OR			
8	a)	For the analog filter with transfer function	CO3	PO2	12

		$H_a(s) = \frac{4}{(s+2)(s+3)}$ determine the digital IIR transfer function H(Z) using impulse invariance transformation. Given T=2 sec			
	b)	Obtain the digital filter H(z) from analog filter Ha(s) using bilinear transformation. Given the $H_a(s) = \frac{4s}{s^2 + 0.4s + 2} \text{ and } T = 2 \text{ sec}$	CO3	PO2	08
UNIT - V					
9	a)	Design a FIR digital filter with the following desired specification using a Hanning window with N=7 $H(\Omega)_d = \begin{cases} e^{-3jw} & -\frac{\pi}{4} \leq w \leq \frac{\pi}{4} \\ 0 & \frac{\pi}{4} \leq w \leq \pi \end{cases}$	CO3	PO3	10
	b)	Design a FIR digital filter with the following desired specification using a frequency sampling method with N=7: $H(w)_d = \begin{cases} e^{-j3w} & 0 \leq w \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{4} \leq w \leq \pi \end{cases}$	CO3	PO3	10
		OR			
10	a)	Enumerate the advantages and disadvantages of FIR filters.	CO1	PO1	08
	b)	Design a lowpass FIR filter using rectangular window with M=7 and with a cutoff frequency of 1 rad/sec.	CO3	PO3	12

B.M.S.C.E. -