

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 22EE6PCSIP

Max Marks: 100

Course: Signal Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Analyze and Evaluate the average power or energy of the following signals after determining whether they are Energy or Power signals. <i>i).</i> $x(n) = u(n)$, <i>ii).</i> $x(n) = e^{j[(\frac{\pi}{3})n + \frac{\pi}{2}]}$	CO1	PO1	04
	b)	Analyze and sketch the following the DT signal operation of: $x(n): \{1 -1 2 0 1 1 4\}$; 2=origin i). $x(-n-2)$; ii). $x(-2n-2)$; iii). $x(-n+3)$	CO2	PO2	06
	c)	Design an LTI system, If $x(n) = \{1 1 0 2\}$ (1=origin) and $y(n) = \{2 4 6 12 16 L M N\}$ (6=origin). Analyses and develop the DT convolution sum of the signal, evaluate L M &N and also verify by tabular Convolution method.	CO2	PO2	10
OR					
2	a)	What are independent signal operation with examples	CO1	PO1	04
	b)	What are types properties of systems explain with examples	CO1	PO1	06
	c)	If $x(n) = \{1 2 0 3\}$; 2=origin and output: $y(n) = \{1 4 5 10 22 P Q R\}$; 5=Origin, Analyses and evaluate the impulse function of $h(n)$ and also values of PQR.	CO2	PO2	10
UNIT - II					
3	a)	Evaluate & Analyses the z-transform using appropriate property: $x(n) = \frac{1}{3} (n^2 - n) \left(\frac{1}{2}\right)^{n-1} u(n-1)$	CO2	PO2	06
	b)	Analyze and perform the following on the sequence $x(n) = \{1 2 3 1\}$ & $h(n) = \{1 1 1\}$ (i): Linear convolution; (ii): Circular convolution; (iii): Linear convolution using circular convolution.	CO2	PO2	07
	c)	Analyze and Evaluate the linear filtering using DFT &IDFT by overlap save method for $h(n)$ and $x(n)$ given below: $h(n) = \{1 1 1\}$ & $x(n) = \{3 -1 0 1 3 2 0 1 2 1\}$	CO2	PO2	07

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	Develop an 8 point DIT-FFT algorithm, draw the signal flow graph. Evaluate the DFT of the following sequence: $x(n)=\{1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0\}$, using the signal flow graph show all the intermediate results on the signal flow graph.	CO2	PO2	12
	b)	Realize the following system function by IIR structure: i). Direct-Form-II & ii). Cascaded Form: $H(z) = \frac{Y(z)}{X(z)} = \frac{8z^3 - 4z^2 - 11z - 2}{(z - 0.25)(z^2 - z + 0.5)}$	CO2	PO2	08
OR					
5	a)	Develop an 8 point DIF-FFT algorithm, draw the signal flow graph. Evaluate the DIF of the following sequence $x(n)=\{2 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1\}$ using the signal flow graph show all the intermediate results on the signal flow graph.	CO2	PO2	12
	b)	Realize the following system function by linear phase FIR structure: i). $H(z) = 1 + \frac{1}{2}z^{-1} + \frac{1}{3}z^{-2} + \frac{1}{7}z^{-3} + \frac{1}{3}z^{-4} + \frac{1}{2}z^{-5} + z^{-6}$ ii). $H(z) = 1 + \frac{1}{3}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{4}z^{-3} + \frac{1}{3}z^{-4} + z^{-5}$	CO2	PO2	08
UNIT - IV					
6	a)	Design butter-worth filter for the following specifications: $0.8 \leq H_a(s) \leq 1$ for $0 \leq F \leq 1000$ Hz; & $ H_a(s) \leq 0.2$ for $F \geq 5000$ Hz	CO3	PO3	10
	b)	Design the Chebyshev filter with specification: $A_p=2.5$ dB; $\Omega_p=20$ rad/sec; $A_s=30$ dB; $\Omega_s=50$ rad/sec.	CO3	PO3	10
UNIT - V					
7	a)	Design a FIR digital filter with the following desired specification using a Hanning window with $N=7$ $H(\Omega)_d = \begin{cases} e^{-3jw} & \frac{-\pi}{4} \leq w \leq \frac{\pi}{4} \\ 0 & \frac{\pi}{4} \leq w \leq \pi \end{cases}$	CO3	PO3	10
	b)	Design a FIR digital filter with the following desired specification using a frequency sampling method with $N=7$: $H(w)_d = \begin{cases} e^{-j3w} & 0 \leq w \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{4} \leq w \leq \pi \end{cases}$	CO3	PO3	10
