

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 23EE6PCSIP / 22EE6PCSIP

Max Marks: 100

Course: Signal Processing

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT – I			CO	PO	Marks
1	a)	Analyze and evaluate the average power or energy of the following signals after determining whether they are Energy or Power signals $.i) x(n) = 2u(n), ii) x(n) = \left(\frac{1}{3}\right)^n u(n)$	CO2	PO2	04
	b)	Analyze and sketch the following the DT signal operation of : $x(n)=\{1 -1 2 3 -1 1 4\}; 2=\text{origin};$ i) $x(-n-2);$ ii) $x(-2n-2);$ iii) $x(-n+3).$	CO2	PO2	06
	c)	Design an LTI system, which results in response $y(n)$, if the input sequence $x(n) = [1 1 0.5 0.5]$ and $h(n) = [1 1 0.5 0.25]$ by graphical method (linear convolution). Verify the response of the system using the designed unit impulse sequence and using short cut method.	CO3	PO3	10
OR					
2	a)	What is dependent signal operation with examples	CO1	PO1	04
	b)	Explain with examples of following property: static property, causal property & Time-invariant property.	CO1	PO1	06
	c)	If $x(n)=\{1 2 0 3\}; 2=\text{origin}$ and output $y(n)=\{1 4 5 10 22 P Q R\}; 5=\text{Origin}$, Analyse and evaluate the impulse function of $h(n)$ and also values of PQR.	CO2	PO2	10
UNIT – II					
3	a)	Analyze and perform the following on the sequence $x(n)=\{1 2 3 1\} \& h(n)=\{1 1 1\}$ (i) Linear convolution; (ii) Circular convolution; (iii) Linear convolution using circular convolution.	CO2	PO2	08
	b)	Analyze and evaluate the linear convolution of the given sequence:	CO2	PO2	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		h(n) = {1 2 } & x(n)={1 2 -1 2 3 -2 -3 -1 1 1 2 -1 }, using overlap save and overlap-add method, compare the results.			
		OR			
4	a)	Evaluate & analyse the z-transform using appropriate property: $x(n) = n[\left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(n)]$	CO2	PO2	08
	b)	Analyze and evaluate the linear convolution of the given sequence: h(n) = {1 1 1 } & x(n)={3 -1 0 1 3 2 0 1 2 1 }, using overlap save and overlap-add method, compare the results.	CO2	PO2	12
		UNIT - III			
5	a)	Develop an 8 point DIT-FFT algorithm, draw the signal flow graph. Evaluate the DFT of the following sequence x(n)={1 1 1 1 0 0 0 0}, using the signal flow graph show all the intermediate results on the signal flow graph.	CO2	PO2	12
	b)	Realize the following system function by IIR structure: i). Direct-Form-II & ii). Cascaded Form: $H(z) = \frac{Y(z)}{X(z)} = \frac{8z^3 - 4z^2 - 11z - 2}{(z - 0.25)(z^2 - z + 0.5)}$	CO1	PO1	08
		OR			
6	a)	Analyze & develop an 8-point DIF-FFT algorithm, draw the signal flow graph. Evaluate the DFT of the following sequence x(n)=n+1 using the signal flow graph show all the intermediate results on the signal flow graph.	CO2	PO2	12
	b)	Realize the following system function by linear phase FIR structure: i). $H(z) = 1 + \frac{1}{2}z^{-1} + \frac{1}{3}z^{-2} + \frac{1}{7}z^{-3} + \frac{1}{3}z^{-4} + \frac{1}{2}z^{-5} + z^{-6}$ ii). $H(z) = 1 + \frac{1}{3}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{4}z^{-3} + \frac{1}{3}z^{-4} + z^{-5}$	CO1	PO1	08
		UNIT - IV			
7	a)	Design an analog filter with maximally flat response in the passband and acceptable attenuation of -2dB at 20 rad/sec. The attenuation in the stopband should be more than 10dB beyond 30 rad/sec.	CO3	PO3	10
	b)	Design the Chebyshev filter with specification: $A_p=2.5$ dB; $\Omega_p=20$ rad/sec; $A_s=30$ dB; $\Omega_s=50$ rad/sec.	CO3	PO3	10
		OR			
8	a)	Design butter-worth filter for the following specifications: $0.8 \leq H_a(s) \leq 1$ for $0 \leq F \leq 1000$ Hz; & $ H_a(s) \leq 0.2$ for $F \geq 5000$ Hz	CO3	PO3	10
	b)	Design an analog butter-worth band-pass filter for the following specifications: -3dB for frequency above 500Hz and below 5KHz -20dB for frequency less 100Hz and greater than 50KHz	CO3	PO3	10

			UNIT - V			
	9	a)	Design a FIR digital high pass filter with the following desired specification using a Hanning window with N=11 $H(\Omega)_d = \begin{cases} 1 & \frac{\pi}{4} \leq w \leq \pi \\ 0 & \text{otherwise} \end{cases}$	CO3	PO3	10
		b)	Using frequency sampling method, design a band pass filter with the following specification: Sampling frequency: F=80000Hz Cut-off frequency F_{c1} :1000 Hz Cut-off frequency F_{c2} :3000 Hz ; Evaluate the filter co-efficients for N=7	CO3	PO3	10
OR						
	10	a)	Design a FIR digital filter with the following desired specification using a Hanning window with N=7 $H(\Omega)_d = \begin{cases} e^{-3jw} & \frac{-\pi}{4} \leq w \leq \frac{\pi}{4} \\ 0 & \frac{\pi}{4} \leq w \leq \pi \end{cases}$	CO3	PO3	10
		b)	Design a FIR digital filter with the following desired specification using a frequency sampling method with N=7: $H(w)_d = \begin{cases} e^{\frac{-j(N-1)w}{2}} & 0 \leq w \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{4} \leq w \leq \pi \end{cases}$	CO3	PO3	10

B.M.S.C.E. - EVEN SEMESTER - 2024-25