

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: ES – Cluster Elective

Course Code: 19EE7CE2EM

Course: Electrical and Electronics Engineering Materials

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Illustrate with examples the Classification of Engineering Materials	CO1	PO1	10
	b)	Draw the Bravais Lattice for i) Orthorhombic ii) Tetragonal structure of crystal. Give example of such a crystal	CO1	PO1	10
UNIT - II					
2	a)	Illustrate the concept of Bond Energy, Bond Type and Bond Length with examples	CO2	PO1	10
	b)	Enumerate the variations in the bond strength, melting point, thermal expansion and density of the metals of the first transition series with the help of a graph.	CO2	PO1	10
OR					
3	a)	Define Ionization Potential, Electron Affinity and Electronegativity	CO2	PO1	08
	b)	Differentiate between Ionic bonding, Covalent bonding and Metallic bonding	CO2	PO1	12
UNIT - III					
4	a)	With reasons justify that the following are best suited either as conductors or resistors – i) Copper ii) Kanthal wire iii) Graphite iv) Molybdenum and tantalum v) Tungsten	CO2	PO1	10
	b)	Explain the concept of conduction by free electrons and derive the expression for the conductivity (σ)	CO2	PO1	10
UNIT - IV					
5	a)	Illustrate the Fermi level in an intrinsic semiconductor and show the energy gap.	CO3	PO2	08
	b)	In fabrication process, explain the concept of Czochralski (CZ) process of single crystal growth with a neat diagram.	CO3	PO2	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - V					
6	a)	Illustrate with the help of magnetic lines of forces, Classification of magnetic materials	<i>CO3</i>	<i>PO 2</i>	10
	b)	Explain magnetic measurements using direct current method.	<i>CO4</i>	<i>PO3</i>	10
OR					
7	a)	Differentiate Soft magnetic and hard magnetic materials. Give examples	<i>CO3</i>	<i>PO2</i>	10
	b)	Illustrate the process of Conductivity measurements using Kelvin's Double Bridge	<i>CO4</i>	<i>PO3</i>	10

B.M.S.C.E. - ODD SEM 2023-24