

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2024 Semester End Make-Up Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 22EE7OE2EV

Course: Electric and Hybrid Vehicles

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	What is global warming? What are the adverse effects of it?		CO1	PO1	06
	b)	What are the causes and side effects of air pollution?		CO1	PO2,7	08
	c)	Briefly illustrate the history of Electric Vehicles		CO1	PO7	06
			UNIT - II			
2	a)	Draw the Traction Motor Characteristics of a variable-speed electric motor drives. Discuss the regions of operation		CO2	PO2	08
	b)	With a neat diagram, discuss the configuration and operating modes of a Series Hybrid Electric drive trains.		CO2	PO2	12
			UNIT - III			
3	a)	Explain the construction and working of a BLDC motor.		CO4	PO2	08
	b)	Draw the basic magnetic structure of an SRM drive. Derive the torque expression of an SRM motor.		CO4	PO2	12
			UNIT - IV			
4	a)	Explain the importance of energy density and power density in the context of electric vehicle batteries.		CO3	PO2	08
	b)	Describe the working principles of lithium-ion batteries, highlighting their advantages and limitations.		CO3	PO2	12
			OR			
5	a)	What is the working principle of Hydrogen air fuel cell? Draw and explain the Cell voltage, system efficiency, and net power density varying with net current density of a hydrogen-air fuel cell.		CO3	PO2	10
	b)	Discuss the working principle and operation of a Proton Exchange Membrane Fuel Cell (PEMFC). List the advantages and disadvantages		CO3	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - V					
6	a)	Describe the operating patterns of a series hybrid electric drivetrains	<i>CO4</i>	<i>PO2</i>	10
	b)	Describe briefly the design considerations for designing the following parameters of a parallel hybrid electrical drivetrain i. Engine power design ii. PPS design	<i>CO4</i>	<i>PO2</i>	10
OR					
7	a)	Draw and explain the overall control scheme of parallel torque-coupling hybrid drivetrain.	<i>CO4</i>	<i>PO2</i>	10
	b)	Design a series hybrid electric drive train with the following specifications. Vehicle total mass: 1500 kg Rolling resistance coefficient: 0.01 Aerodynamic drag coefficient: 0.3 Front area: 2.0 m ² Transmission efficiency (single gear): 0.9 Acceleration time (from 0 to 100 km/h): 10±1 sec Maximum gradeability: >30% at low speed and >5 at 100 km/h Maximum speed: 160 km/h List all the design steps and estimate gear ratio, power capacity and energy capacity	<i>CO4</i>	<i>PO2</i>	10

B.M.S.C.E. - ODD SEMESTER 2023-24