

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: ES – Cluster Elective

Course Code: 19EE7CE2PQ

Course: Electrical Power Quality

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define power quality and what is the need of power quality in modern day power systems?	CO1	PO1	06
	b)	Explain the overview of various power quality IEC standards.	CO1	PO1	06
	c)	Briefly discuss the power quality monitoring through ITIC and CBEMA curves.	CO1	PO1	08
UNIT - II					
2	a)	Write short notes on the following 1. Power Balance 2. Power-Frequency Control 3. Spinning Reserve 4. Time deviation of clocks	CO2	PO2	10
	b)	Explain in detail various the consequences of under frequency tripping.	CO2	PO2	10
UNIT - III					
3	a)	Write short notes on the following power quality issues with necessary waveforms. 1. Transients 2. Voltage imbalance	CO2	PO2	10
	b)	Write short notes on the following power quality issues with necessary waveforms. 1. Harmonics versus transients 2. Voltage versus current distortion	CO2	PO2	10
OR					
4	a)	Explain the following power system quantities under non sinusoidal operating conditions. 1. Active, reactive, and apparent power 2. Displacement and true power factor 3. Harmonic phase sequences	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Write briefly on the two most commonly used indices for measuring the harmonic content of a waveform.	CO2	PO2	10
		UNIT - IV			
5	a)	Discuss briefly the effects of harmonic distortion on the following three systems. 1. Effect on capacitors 2. Effect on transformers	CO2	PO2	10
	b)	With necessary diagram, explain the sources of harmonics originated from commercial loads.	CO2	PO2	10
		OR			
6	a)	Define grounding and why grounding is required for a system	CO2	PO2	10
	b)	Briefly describe the typical wiring and grounding problems in the electrical systems.	CO2	PO2	10
		UNIT - V			
7	a)	Explain how the power quality is measured through 1. Harmonic analyzer and spectrum analyzer. 2. Disturbance analyzer.	CO2	PO2	10
	b)	Explain the following types of nonlinear loads with necessary circuit diagram. 1. Converter-Based Nonlinear Loads 2. Nature-Based Classification	CO2	PO2	10
