

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 22EE7PE3VT

Max Marks: 100

Course: Electric Vehicle Technology

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Differentiate the various speed control methods in DC Motor.	<i>CO1</i>	<i>PO1</i>	12
	b)	Compare the different considerations of Electric Vehicle.	<i>CO1</i>	<i>PO1</i>	08
OR					
2	a)	Explore the advantages and challenges of Permanent Magnet motors.	<i>CO1</i>	<i>PO2</i>	10
	b)	Explain the control methods, advantages and applications of Induction motor.	<i>CO1</i>	<i>PO2</i>	10
UNIT - II					
3	a)	Compare the rectifiers used in Hybrid Electric Vehicles.	<i>CO1</i>	<i>PO3</i>	10
	b)	Which DC - DC Converter is used in the Hybrid Electric Vehicle and explain its working principle.	<i>CO1</i>	<i>PO3</i>	10
OR					
4	a)	Derive the output voltages for buck converter and boost converter used in non isolated bidirectional DC - DC converter.	<i>CO1</i>	<i>PO3</i>	10
	b)	Distinguish onboard chargers and off board chargers.	<i>CO1</i>	<i>PO3</i>	10
UNIT - III					
5	a)	Write a short note on types of batteries.	<i>CO1</i>	<i>PO1</i>	10
	b)	Explore various battery parameters for EV applications.	<i>CO1</i>	<i>PO1</i>	10
OR					
6	a)	Describe any one method to estimate the State of Charge of Li-ion battery. Bring out its advantages and disadvantages.	<i>CO1</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Design a battery management system for Electric Vehicle application.	CO1	PO1	10
UNIT - IV					
7	a)	Discuss the general components in PWM converter with a neat diagram	CO2	PO2	10
	b)	Explain the average state space model of a PWM converter.	CO2	PO2	10
OR					
8	a)	Estimate the current ripple and the torque ripple in inverter fed drives.	CO2	PO3	10
	b)	Write a short note on constant V/F induction motor drives.	CO2	PO3	10
UNIT - V					
9	a)	Distinguish slow charging and fast charging.	CO3	PO4	10
	b)	Demonstrate each part in the basic block diagram of the charger in an Electric Vehicle.	CO3	PO4	10
OR					
10	a)	Discuss the solar charging stations for Electric Vehicles.	CO3	PO4	10
	b)	What are the components of EV charging Infrastructure and explain each and every part in it.	CO3	PO4	10
