

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 22EE7PCHVE

Max Marks: 100

Course: High Voltage Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What are the properties of insulating materials used in High Voltage Applications? Explain each of their properties in detail.	CO1	PO1	10
		b)	Explain in detail the electron emissions due to Secondary Ionization process.	CO4	PO1	10
OR						
	2	a)	Derive townsend first and second ionization coefficients.	CO3	PO2	10
		b)	What is meant by Paschens Laws and their significance.	CO3	PO2	10
UNIT - II						
	3	a)	Discuss all the rectifier circuits used in HVDC with neat circuit diagrams and waveforms.	CO1	PO1	10
		b)	Demonstrate the role of Cockcroft Walton Voltage multipliers in generating high voltages.	CO1	PO1	10
OR						
	4	a)	Discuss the role of Cascaded transformers in generating High Voltages. Explain any one in detail.	CO3	PO2	10
		b)	What are the components and working principles of Tesla Coil?	CO3	PO3	10
UNIT - III						
	5	a)	Derive the expression for any output impulse voltage.	CO2	PO2	10
		b)	Explain the required components of multi stage impulse generator.	CO2	PO3	10
OR						
	6	a)	Explore the working of Marx impulse generator.	CO2	PO2	10

	b)	Write a short note on impulse current generator giving its root causes and waveforms.	CO2	PO3	10
		UNIT - IV			
7	a)	Classify the over voltages in the power system.	CO2	PO2	10
	b)	Explain the effect of over voltages on power system components.	CO2	PO3	10
		OR			
8	a)	How a surge diverter is used in a power system. Explain with neat diagram	CO3	PO4	10
	b)	What is EMI and EMC? Explain the EMI and EMC protection against over voltages? Distinguish between the EMI and EMC protection against over voltages.	CO3	PO4	10
		UNIT - V			
9	a)	Draw the diagram of the vertical Sphere gap and discuss how it is useful for measuring high voltages.	CO2	PO3	10
	b)	Explain the digital peak reading voltage meter with a neat sketch.	CO2	PO3	10
		OR			
10	a)	Draw the diagram and explain the circuit operation of the following <ul style="list-style-type: none"> • High Ohmic Series Resistance with Microammeter • Resistance Potential Dividers for DC voltages 	CO2	PO3	10
	b)	With a neat sketch, identify the operation of the peak reading meter with a potential divider.	CO2	PO3	10
