

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## September / October 2024 Supplementary Examinations

**Programme: B.E.**

**Branch: Electrical and Electronics Engineering**

**Course Code: 19EE7PCPS2**

**Course: Power Systems-II**

**Semester: VII**

**Duration: 3 hrs.**

**Max Marks: 100**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

|                |               | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO                   | PO            | Marks           |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
|----------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|-----------------|-------------------|---|-----|-------|---|---|-----|-------|----------------------|---|-----|-------|----------------------|---|-----|-------|---|-----|-----|-----------|
| 1              | a)            | Derive an expression for off-nominal turns ratio of transformer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO3                  | PO1           | <b>06</b>       |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
|                | b)            | For the graph given in fig. 1 (b), Construct matrices A, B, C, and K, taking bus '0' as reference. Consider elements 1,2,3, as branches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO2                  | PO2           | <b>08</b>       |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
|                | c)            | <p>For the data shown in Table 1. (c), Form Ybus using Singular transformation method. Take bus 1 as ref node.</p> <table border="1"> <thead> <tr> <th>Element Number</th> <th>Between Buses</th> <th>Self-admittance</th> <th>Mutual admittance</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>1-2</td> <td><math>j 2</math></td> <td>-</td> </tr> <tr> <td>2</td> <td>1-3</td> <td><math>j 3</math></td> <td><math>j 0.5</math> ( Element 1)</td> </tr> <tr> <td>3</td> <td>2-3</td> <td><math>j 4</math></td> <td><math>j 0.5</math> ( Element 1)</td> </tr> <tr> <td>4</td> <td>1-2</td> <td><math>j 5</math></td> <td>-</td> </tr> </tbody> </table> <p>Table 1.(c)</p> | Element Number       | Between Buses | Self-admittance | Mutual admittance | 1 | 1-2 | $j 2$ | - | 2 | 1-3 | $j 3$ | $j 0.5$ ( Element 1) | 3 | 2-3 | $j 4$ | $j 0.5$ ( Element 1) | 4 | 1-2 | $j 5$ | - | CO2 | PO2 | <b>06</b> |
| Element Number | Between Buses | Self-admittance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mutual admittance    |               |                 |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
| 1              | 1-2           | $j 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                    |               |                 |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
| 2              | 1-3           | $j 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $j 0.5$ ( Element 1) |               |                 |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
| 3              | 2-3           | $j 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $j 0.5$ ( Element 1) |               |                 |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
| 4              | 1-2           | $j 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                    |               |                 |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
|                |               | UNIT - II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |               |                 |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
| 2              | a)            | How buses are classified in power systems? What is the significance of Slack bus?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO1                  | PO2           | <b>06</b>       |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |
|                | b)            | For the data shown in Table 2. (b), obtain voltages at all buses at the end of first iteration using G.S method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO2                  | PO2           | <b>14</b>       |                   |   |     |       |   |   |     |       |                      |   |     |       |                      |   |     |       |   |     |     |           |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

| Element Number | Between Buses | Line Impedance (p.u) | Line charging admittance (p.u) |
|----------------|---------------|----------------------|--------------------------------|
| 1              | 1-2           | 0.25 j               | 2 j                            |
| 2              | 1-3           | 0.5 j                | 1 j                            |
| 3              | 2-3           | 0.75 j               | 0.5 j                          |
| 4              | 1-2           | 0.5 j                | 0.5 j                          |

| Bus | $P_G$ (p.u) | $Q_G$ (p.u) | $P_D$ (p.u) | $Q_D$ (p.u) | Voltage (p.u) |
|-----|-------------|-------------|-------------|-------------|---------------|
| 1   | --          | --          | --          | --          | 1.06          |
| 2   | 0.5         | --          | 0.2         | --          | 1.02          |
| 3   | 0.5         | 0.3         | 0.3         | 0.1         | --            |

Table 2(b)

**OR**

3 a) Explain G.S method of load flow analysis with flow chart.

CO1 PO1 **06**

b) For the data shown in Table 2. (b), obtain voltages at all buses at the end of first iteration using G.S method. Consider  $\alpha = 1.2$

| Element Number | Between Buses | Admittance (p.u) |
|----------------|---------------|------------------|
| 1              | 1-2           | 2 j              |
| 2              | 1-3           | 4 j              |
| 3              | 2-3           | 6 j              |
| 4              | 1-2           | 5 j              |

| Bus | $P_G$ (p.u) | $Q_G$ (p.u) | $P_D$ (p.u) | $Q_D$ (p.u) | Voltage (p.u) |
|-----|-------------|-------------|-------------|-------------|---------------|
| 1   | --          | --          | --          | --          | 1.06          |
| 2   | 0.5         | --          | 0.2         | 0.2         | --            |
| 3   | 0.5         | 0.3         | 0.3         | 0.1         | --            |

**UNIT - III**

4 a) Explain N.R method of load flow analysis with flow chart.

CO1 PO1 **08**

b) A system consists of two buses 1 and 2, and line of impedance  $(0.2 + j0.5)$  p.u is connected between these buses. Generator is connected at bus 1 with a voltage of 1.04 p.u and a load of  $(0.2 + j0.5)$  p.u is connected at bus 2. Find the voltage at bus 2 at the end of first iteration using FDLF method.

CO2 PO3 **12**

**UNIT - IV**

5 a) Derive an expression for loss-co-efficients for a two generating plant in economic operation of power systems.

CO4 PO1 **10**

|   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |           |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   | b) | <p>A two bus system is shown in fig 5(b), if 75 MW of power is imported to bus-1 from bus-2, a loss of 5 MW is incurred, find the required generation for each plant and power received by load when the plant incremental cost is 20. the incremental fuel cost of two plants are</p> $\frac{dF_1}{dP_{G_1}} = 0.03P_{G_1} + 15 \text{ Rs/MWh}$ $\frac{dF_2}{dP_2} = 0.05P_{G_2} + 18 \text{ Rs/MWh}$  | CO4 | PO2 | <b>10</b> |
|   |    | <b>UNIT - V</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |           |
| 6 | a) | With a neat block diagram, explain operating states of power systems.                                                                                                                                                                                                                                                                                                                                                                                                                    | CO1 | PO1 | <b>10</b> |
|   | b) | With neat block diagram explain speed governor system of ALFC.                                                                                                                                                                                                                                                                                                                                                                                                                           | CO2 | PO2 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |           |
| 7 | a) | With a neat block diagram, explain digital computer configuration of power system.                                                                                                                                                                                                                                                                                                                                                                                                       | CO1 | PO1 | <b>10</b> |
|   | b) | With neat block diagram explain closing loop of ALFC.                                                                                                                                                                                                                                                                                                                                                                                                                                    | CO2 | PO2 | <b>10</b> |

\*\*\*\*\*