

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

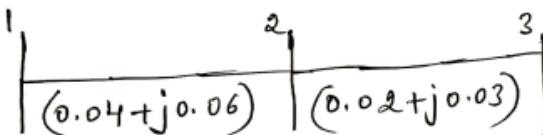
Programme: B.E.

Semester: VII

Branch: Electrical and Electronics Engineering

Duration: 3 hrs.

Course Code: 19EE7PCPS2


Max Marks: 100

Course: Power Systems-II

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I			CO	PO	Marks																														
1	a)	Derive the standard expression $Y_{bus} = A^T[Y]A$ using singular transformation method.	CO2	PO2	08																														
	b)	For a given network shown in Fig 1(b), Obtain Y_{bus} using inspection method. All generators are having a series reactance of $j0.02$ pu. A shunt capacitor is connected at bus 4 with an admittance value of $j0.05$ pu.	CO3	PO2	12																														
		Fig 1(b)																																	
		<table border="1"> <thead> <tr> <th>Element No.</th> <th>Buses (i-j)</th> <th>Z_{pq-pq} (pu)</th> <th>(line charging) Y_{sh} (pu)</th> <th>Off nominal turns ratio</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>1-2</td> <td>0.02+j0.08</td> <td>--</td> <td>0.95</td> </tr> <tr> <td>2</td> <td>1-3</td> <td>0.02+j0.06</td> <td>$j0.02$</td> <td>-</td> </tr> <tr> <td>3</td> <td>3-4</td> <td>0.01+j0.05</td> <td>$j0.01$</td> <td>-</td> </tr> <tr> <td>4</td> <td>4-1</td> <td>0.02+j0.04</td> <td>--</td> <td>0.90</td> </tr> <tr> <td>5</td> <td>2-4</td> <td>0.01+j0.03</td> <td>$j0.03$</td> <td>--</td> </tr> </tbody> </table>	Element No.	Buses (i-j)	Z_{pq-pq} (pu)	(line charging) Y_{sh} (pu)	Off nominal turns ratio	1	1-2	0.02+j0.08	--	0.95	2	1-3	0.02+j0.06	$j0.02$	-	3	3-4	0.01+j0.05	$j0.01$	-	4	4-1	0.02+j0.04	--	0.90	5	2-4	0.01+j0.03	$j0.03$	--			
Element No.	Buses (i-j)	Z_{pq-pq} (pu)	(line charging) Y_{sh} (pu)	Off nominal turns ratio																															
1	1-2	0.02+j0.08	--	0.95																															
2	1-3	0.02+j0.06	$j0.02$	-																															
3	3-4	0.01+j0.05	$j0.01$	-																															
4	4-1	0.02+j0.04	--	0.90																															
5	2-4	0.01+j0.03	$j0.03$	--																															
		OR																																	
2	a)	Form Y_{bus} by singular transformation method for the system shown below. Take bus 1 as reference.	CO2	PO2	12																														
		<table border="1"> <thead> <tr> <th>Element No.</th> <th>Bus code (p-q)</th> <th>Impedance (Z) in p.u</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>1-2</td> <td>$j0.15$</td> </tr> <tr> <td>2</td> <td>1-3</td> <td>$j0.30$</td> </tr> <tr> <td>3</td> <td>2-3</td> <td>$j0.45$</td> </tr> <tr> <td>4</td> <td>2-4</td> <td>$j0.30$</td> </tr> </tbody> </table>	Element No.	Bus code (p-q)	Impedance (Z) in p.u	1	1-2	$j0.15$	2	1-3	$j0.30$	3	2-3	$j0.45$	4	2-4	$j0.30$																		
Element No.	Bus code (p-q)	Impedance (Z) in p.u																																	
1	1-2	$j0.15$																																	
2	1-3	$j0.30$																																	
3	2-3	$j0.45$																																	
4	2-4	$j0.30$																																	

	b)	How a transformer with off-nominal turns ratio is modelled in power systems?	CO1	PO1	08																																										
		UNIT - II																																													
3	a)	What is load flow problem? Explain in detail the different types of buses in a power system. Discuss the significance of slack bus in the load flow studies.	CO2	PO2	10																																										
	b)	The following is the system data for a load flow solution. The line admittance and bus data are given below. Find the voltages at the end of 1 st iteration using Gauss-Siedel method by taking α as 1.6.	CO3	PO3	10																																										
		<table border="1"> <thead> <tr> <th>Line</th> <th>Admittance</th> <th>Bus code</th> <th>P</th> <th>Q</th> <th>V</th> <th>Remarks</th> </tr> </thead> <tbody> <tr> <td>1-2</td> <td>2-j8</td> <td>1</td> <td>-</td> <td>-</td> <td>1.06</td> <td>Slack</td> </tr> <tr> <td>1-3</td> <td>1-j4</td> <td>2</td> <td>0.5</td> <td>0.2</td> <td>1+j0</td> <td>PQ</td> </tr> <tr> <td>2-3</td> <td>0.666-j2.664</td> <td>3</td> <td>0.4</td> <td>0.3</td> <td>1+j0</td> <td>PQ</td> </tr> <tr> <td>2-4</td> <td>1-j4</td> <td>4</td> <td>0.3</td> <td>0.1</td> <td>1+j0</td> <td>PQ</td> </tr> <tr> <td>3-4</td> <td>2-j8</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> </tr> </tbody> </table>	Line	Admittance	Bus code	P	Q	V	Remarks	1-2	2-j8	1	-	-	1.06	Slack	1-3	1-j4	2	0.5	0.2	1+j0	PQ	2-3	0.666-j2.664	3	0.4	0.3	1+j0	PQ	2-4	1-j4	4	0.3	0.1	1+j0	PQ	3-4	2-j8	-	-	-	-	-			
Line	Admittance	Bus code	P	Q	V	Remarks																																									
1-2	2-j8	1	-	-	1.06	Slack																																									
1-3	1-j4	2	0.5	0.2	1+j0	PQ																																									
2-3	0.666-j2.664	3	0.4	0.3	1+j0	PQ																																									
2-4	1-j4	4	0.3	0.1	1+j0	PQ																																									
3-4	2-j8	-	-	-	-	-																																									
		OR																																													
4	a)	Derive the load flow equations for G.S. Method. List the data essential for the power flow.	CO2	PO2	10																																										
	b)	For the network shown in the Fig. 4(b), obtain the complex bus-bar voltages at the end of first iteration using Gauss-Siedal method. Bus-1 is a Slack bus with $V_1 = 1.0\angle 0^0$ pu. Take $P_2+jQ_2 = -5.96+j1.46$ pu, $P_3 = 6.02$ pu and $ V_3 = 1.02$ pu. Assume $V_3^0 = 1.02\angle 0^0$ pu and $V_2^0 = 1\angle 0^0$ pu. Given data are in impedance form.	CO3	PO3	10																																										
		<p>Fig 4(b)</p>																																													
		UNIT - III																																													
5	a)	Obtain the expressions of Jacobian of Newton Raphson's power flow model.	CO2	PO2	08																																										
	b)	Obtain voltages at the end of first iteration using FDLF method for Fig. 5(b). Consider base MVA as 100.	CO2	PO3	12																																										
		<table border="1"> <thead> <tr> <th>Bus data</th> <th>P_g (MW)</th> <th>Q_g (MVar)</th> <th>P_d (MW)</th> <th>Q_d (MVar)</th> <th>Voltage (pu)</th> </tr> </thead> <tbody> <tr> <td>1</td> <td>--</td> <td>--</td> <td>--</td> <td>--</td> <td>1.05</td> </tr> <tr> <td>2</td> <td>--</td> <td>--</td> <td>40</td> <td>25</td> <td>--</td> </tr> <tr> <td>3</td> <td>40</td> <td>?</td> <td>20</td> <td>10</td> <td>1.04</td> </tr> </tbody> </table>	Bus data	P _g (MW)	Q _g (MVar)	P _d (MW)	Q _d (MVar)	Voltage (pu)	1	--	--	--	--	1.05	2	--	--	40	25	--	3	40	?	20	10	1.04																					
Bus data	P _g (MW)	Q _g (MVar)	P _d (MW)	Q _d (MVar)	Voltage (pu)																																										
1	--	--	--	--	1.05																																										
2	--	--	40	25	--																																										
3	40	?	20	10	1.04																																										

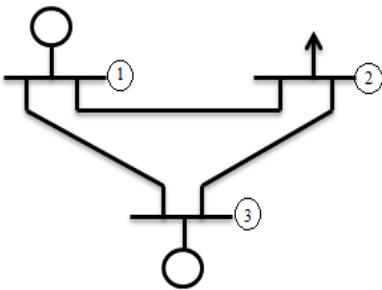


Fig. 5(b)

Line data	Line (p-q)	Z_{pq}	Y_{sh}
1	1-2	$0.25+j0.04$	$J0.05$
2	2-3	$0.15+j0.03$	$J0.05$
3	1-3	$0.30+j0.05$	$J0.05$

OR

6 a) With flow chart and assumptions, explain FDLF method of load flow analysis.

CO2 PO2 **10**

b) For a power system shown in Fig 6(b) obtain Jacobian elements using NR method of load flow analysis.

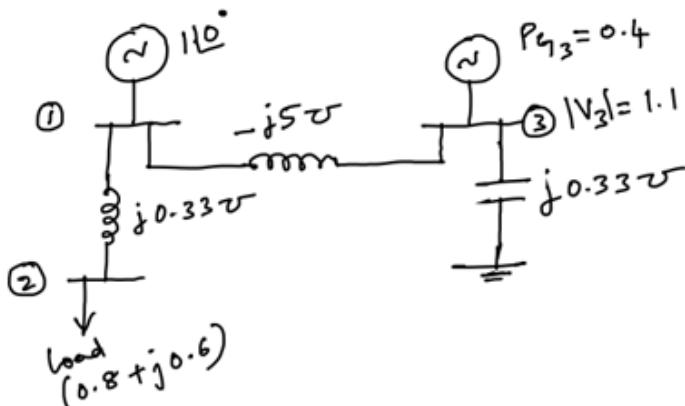


Fig 6(b)

UNIT - IV

7 a) Define: (i) Penalty factor (ii) Incremental fuel rate

CO4 PO1 **04**

b) The fuel cost of two units are given by,

$$C_1 = 1.5 + 20P_{G1} + 0.1P_{G1}^2 \text{ Rs/hr,}$$

$$C_2 = 1.9 + 30P_{G2} + 0.1P_{G2}^2 \text{ Rs/hr.}$$

If the total demand is 200 MW, find the economic load scheduling of the two units.

c) Compute the loss co-efficient for the network shown in Fig.7(c)

CO4 PO2 **06**

$$I_a = 1.6 - j0.4 \text{ pu} \quad Z_a = 0.15 \angle 85^\circ \text{ pu}$$

$$I_b = 1.8 - j0.45 \text{ pu} \quad Z_b = 0.15 \angle 78^\circ \text{ pu}$$

$$I_c = 2 - j0.5 \text{ pu} \quad Z_c = 0.25 \angle 85^\circ \text{ pu}$$

consider $v_1 = 1.2 \angle 0^\circ \text{ pu}$

CO4 PO3 **10**

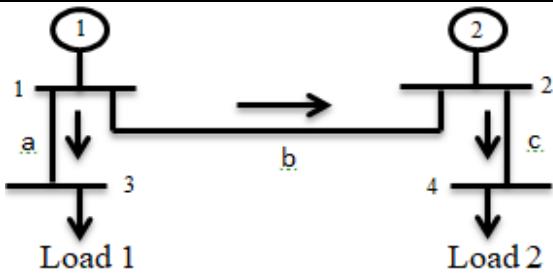


Fig.7(c)

OR

8 a) Derive an expression of B-Coefficients for two generating plants.

CO4 PO1 10

b) A two-bus system, without generator limits, has been considered which is shown in Fig. 8(b),
 where $P_{load(A)} = 450 \text{ MW}$, $P_{load(B)} = 125 \text{ MW}$ and
 $P_{loss} = 0.08(P_{G(A)}) + 10$
 $(IFC)_A = 0.06 P_{G(A)} + 4.0 \text{ Rs/MWh}$
 $(IFC)_B = 0.07 P_{G(B)} + 6.0 \text{ Rs/MWh}$
 Find optimal generator scheduling and power loss in the system.

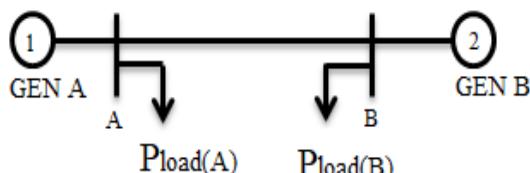


Fig. 8(b)

UNIT - V

9 a) For an isolated power system, consider the following system data

CO2 PO3 10

Rating of the generator: 250 MW

Nominal operating load: 125 MW

Inertia constant: 5.0 Sec

Speed regulation of the governor: 2.5 %

Nominal frequency: 60 Hz.

Find

a) Gain constant and time constant of ALFC.

b) Static frequency change for the uncontrolled case when the load is increased to 150 MW.

c) System frequency during change of load.

Consider linear change.

b) Explain operating states of power systems with block diagram.

CO1 PO1 10

OR

10 a) Explain digital system configuration with block diagram.

CO1 PO1 10

b) Develop a mathematical model of speed governor system, with block diagram.

CO2 PO1 10