

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Electrical & Electronics Engineering

Duration: 3 hrs.

Course Code: 19EEE7PCSPE

Max Marks: 100

Course: Sustainable Practices in Power Engineering

Date: 05.03.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	a) Name top three requirements to sustain in the supply of electrical power. List two adverse situations that can result due to loss of electrical power.	03 01
	b) List four reasons for Technical T&D Losses in India. What are the ongoing / available solutions to reduce them?	02 04
	c) List four reasons for Commercial T&D Losses in India. What are the possible solutions to mitigate them?	02 04
	d) Name four alternate sources of energy to generate electrical power, and their pros and cons .	04

UNIT - II

2	a) List any four LV Switchgear Devices used for protection or control of electrical power. Mention their operational life at rated current.	02 02
	Mention their capability to Make, Break, and Withstand Overload current . Mention their capability to Make, Break, and withstand Short-Circuit current .	02 02
	b) In what duration (mill-seconds) should a short-circuit current be terminated ? What can happen if switchgear fails to terminate it within specified duration?	02
	c) Draw a sketch showing construction of an HRC/HBC Fuse-link. Label each component, describe its function , and state its material . Describe how an HRC/HBC fuse terminates a short-circuit current.	02 04 02

OR

3	a) For which application do we use a contactor ? How is high operational life in millions of operations achieved in contactors? Why is contactor not capable of breaking high short-circuit current?	01 02 02
	b) Describe normal operation (AC-3 duty) of a contactor during starting a motor. Describe its operation (AC-4) in locked-rotor situation. Why is the AC-4 duty life of a contactor much lower, than its life for AC-3 duty?	02 02
	c) Describe contact-bounce in a contactor. Why is it detrimental? How can it be minimized?	02 02

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

d) Describe **contact pop-up** in a contactor. Is it related to value of current? **03**
 What are its adverse effects? How can we reduce pop-up? **02**

UNIT - III

4 a) Describe the effect of 5mA, 30mA, 100mA current through human body. **03**
 Within what time should such 30mA **current** needs to be terminated? **01**
 How do we ensure quick termination of leakage currents? **02**

b) With a schematic diagram explain the working of an **ELCB**, and the function of **CBCT** (Core Balance Current Transformer) and **(PMR)** Relay in it. **04**
 Describe the Design Parameters associated with (CBCT). **02**
 How to ensure properties of CBCT are **retained** through the life of an ELCB? **02**

c) Describe Design Parameters associated components of **(PMR)** Relay in ELCB? **03**
 How is flatness, polish and cleanliness of relay's mating surfaces achieved? **03**

OR

5 a) Can electrical fires be initiated even at rated current? How? **02**
 Why do devices like Breakers / Fuses not prevent such fires? **02**
 How do AFCI / AFDD sense and offer protection against small arcing currents? Within what time should undesired arcing current be sensed and interrupted to avoid electrical fire? **02**

b) Differentiate between Parallel-Arc and Series-Arc. **02**
 What are potential sources of arcing in a circuit that can give a **pseudo signal** to cause **unwarranted** tripping of AFCI / AFDD? **02**
 In which type of installations would you recommend not to use devices like AFCI / AFDD? **01**

c) Describe **Arc-Flash** in a Power Panel? **01**
 Describe the damage that it can cause if it is not controlled? **03**
 How can the damage due to Arc-Flash be minimised? **03**
 What parameter decides the type of **PPE** to be used? **01**

UNIT - IV

6 a) Describe **Selectivity** with a sketch diagram between upstream & downstream switchgear and its **importance**. **04**
 Explain how selectivity is achieved using Time-Current Characteristics, I^2t Characteristics, Time-Delay, and ZSI (Zone Selective Interlocking) **04**

b) Describe in brief the role of following sub-systems in a switchgear: **03**
 (i) Current Path ; (ii) Arc-extinction System ; (iii) Auxiliary Signal system?
 How can each of these sub-systems fail? **03**

c) What is **Clearance and Creepage** associated with electrical switchgear? **03**
 Explain the difference between them using a sketch.
 What are the **Parameters** used to specify minimum values for Clearance and Creepage? **03**

UNIT - V

7 a) How would you define a **robust** design? **01**
 Describe **four** processes that can help to design robust products. **04**
 What is a '**Fail-Safe**' design? **01**
 How '**Six Sigma**' approach helps to assure performance of safety products? **02**

b) How would you define **Reliability** of switchgear products? **02**
 How does testing a product 'to death' help, as against testing it only for

relevant specifications?	02
Give an example of (ALT) Accelerated Life Testing and its benefits.	02
c) Describe classification for 'Ingress Protection' for enclosures, used to house electrical switchgear and its related parameters .	04
Explain failure modes if the enclosure fails to meet ingress of solids and liquids.	02

B.M.S.C.E. - ODD SEM 2022-23