

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Semester: I

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 22EC1ESBEC

Max Marks: 100

Course: Basic Electronics

Date: 15.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Derive the expression for Ripple factor and efficiency of Bridge rectifier. **10**
 b) What is a Regulated power supply? Explain with block diagram. **05**
 c) Design a Zener regulator for following specification: Load current $I_L = 30\text{mA}$ output voltage $V_0 = 6.1\text{ V}$, Zener wattage $P_z = 400\text{mW}$, Input voltage $V_i = 16\pm2\text{V}$ and $I_{Z\min} = 5\text{ mA}$. **05**

OR

2 a) A half wave rectifier circuit is supplied from a 230V, 50Hz supply with a step-down ratio of 5:1 to a resistive load of $1\text{k}\Omega$. Diode forward resistance is 50Ω , while transformer secondary resistance is 10Ω . Calculate maximum, average, RMS value of current, DC output voltage, efficiency of rectification and ripple factor. **10**
 b) Discuss the impact of using capacitor filter in a Bridge Rectifier with the help of circuit diagram and waveform. **06**
 c) Determine the values of maximum and minimum values of Zener diode current for the circuit shown in Figure 1. **04**

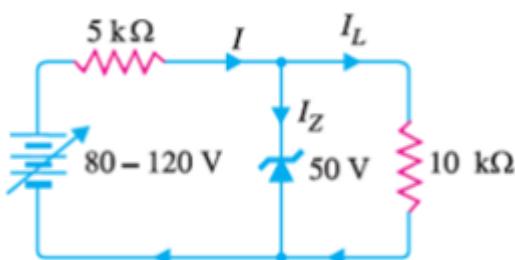


Figure 1

UNIT - II

3 a) A circuit needs to switch ON and OFF an LED. Construct the circuit using BJT and explain the same. **07**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b) Identify the following V-I characteristics shown in Figure 2 and comment on the operation of circuit used to get same. **08**

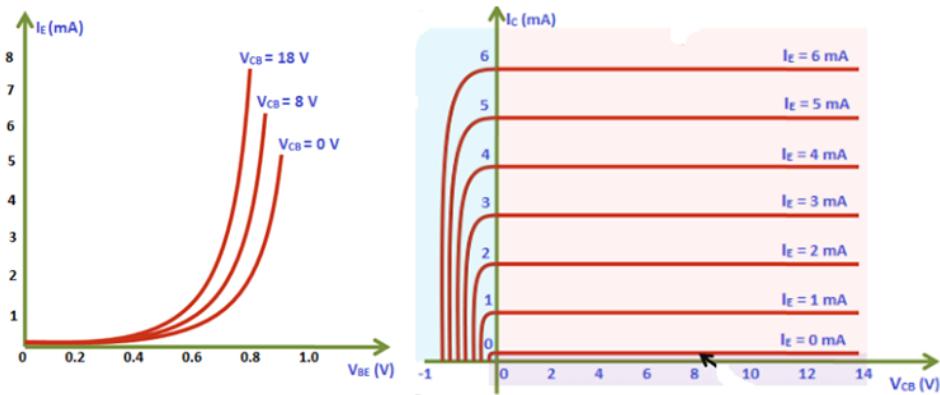


Figure 2

c) An amplifier has a bandwidth of 500 kHz and a voltage gain of 1000. **05**

- What will be the new bandwidth and gain if 10% negative feedback is introduced?
- What is the gain bandwidth product with and without feedback? Comment on the same.

UNIT - III

4 a) Draw the circuit diagram of Hartley oscillator and explain its operation. **06**

b) Design a single op-amp circuit that performs amplified average function with a gain of 5. Draw the circuit diagram and clearly mark all the resistors values. **06**

c) Derive the expression for output voltage of an Op-Amp differentiator with a diagram. When a sine wave of 1V peak at 2kHz is applied to the circuit with the following specification: $R_F = 1k\Omega$ and $C_1 = 0.47\mu F$, find its output waveform and its output equation. **08**

UNIT - IV

5 a) Design a combinational circuit to implement full adder in terms of logic gates. **06**

b) (i) Simplify $f(W, X, Y, Z) = \bar{W}XY\bar{Z} + XY\bar{Z} + X\bar{Y}\bar{Z} + X\bar{Y}Z$ using Boolean laws and realize using only NAND gates. **08**

(ii) $f(A, B, C) = AB + \bar{A}BC + A\bar{C} + \bar{A}\bar{B}C$ using Boolean laws and realize using only basic gates.

c) Explain the working of SR flip-flop with the help of truth table and circuit. **06**

OR

6 a) Discuss the different states of JK flip-flop with the help of circuit and truth table. **06**

b) Perform the following: (i) Convert the number $(C69.5)_{16}$ to octal
(ii) Convert $(567.42)_8$ to decimal
(iii) Convert $f(A, B, C) = (A + \bar{B})(\bar{A} + C)$ into standard POS
(iv) Prove that $AB + C(\overline{A \oplus B}) = AB + BC + CA$ **08**

c) Discuss the universality of NAND and NOR gates. **06**

UNIT - V

7 a) A 15KHz audio signal is used to frequency modulate a 100MHz carrier, causing a carrier deviation of 75KHz. Determine Modulation Index and Carrier swing. **04**

b) Discuss the components of a Receiver with relevant diagram and explain each of its function. **06**

c) Discuss in detail concept of cellular telephone system and evolution from 1G to 4G. **10**
