

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

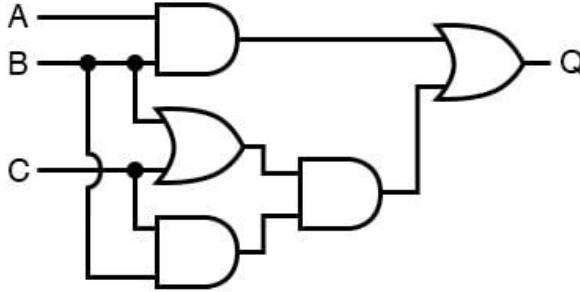
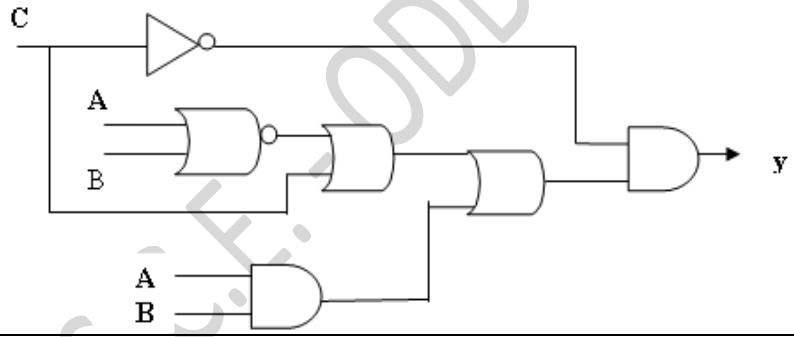
Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 22EC1ESBEC / 22EC2ESBEC

Max Marks: 100



Course: Basic Electronics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What is Regulated power supply? Explain with block diagram.	-	-	5
	b)	Derive the expression for Ripple factor and efficiency of Bridge rectifier.	CO1	PO1	10
	c)	The saturation current density of a PN junction Ge diode is 250mA/m ² at 300 ⁰ K. Find the voltage that must be applied across junction to cause forward current density of 10 ⁵ A/m ² to flow	CO1	PO1	5
OR					
2	a)	A sinusoidal wave of $V=600\sin 30t$ is applied to a half wave rectifier. The load resistance is $2K\Omega$ and forward resistance of the diode is 60Ω . Find 1. DC current through the Diode 2. RMS value of current through the circuit 3. DC output voltage 4. AC power input 5. DC power output 6. Rectifier efficiency	CO1	PO1	12
	b)	Design a Zener regulator for following specification: Load current $I_L = 30\text{mA}$ output voltage $V_0 = 6\text{ V}$, Zener wattage $P_z = 700\text{mW}$, Input voltage $V_i = 10 \pm 2\text{V}$ and $I_{Z\min} = 6\text{ mA}$	CO3	PO3	8
UNIT - II					
3	a)	Briefly explain the any two advantages of negative feedback systems.	-	-	10
	b)	Deduce the relationship between various Transistor current and also α and β of a transistor. In a common emitter transistor circuit, if $\beta = 80$ and $I_B = 40\mu\text{A}$, compute the values of α , I_E and I_C .	CO1	PO1	10
UNIT - III					
4	a)	Derive how Operational Amplifier can be used as a subtracting device.	CO1	PO1	8
	b)	What is the frequency of Hartley oscillator if the total inductance of L_1 and L_2 is 50mH and the capacitance of the resonant circuit is 200pF ?	CO1	PO1	4
	c)	Design an Op-Amp circuit to provide an output of $V_o = -[3V_1 + 6V_2 + 9V_3]$.	CO3	PO3	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV

		UNIT - IV			
5	a)	Perform the following a) $(532.65)_{10} = (?)_{16} = (?)_8$ b) $(250.67)_{16} = (?)_2 = (?)_{10}$	CO1	PO1	10
	b)	Analyze the logic circuit shown in fig. Determine the Boolean function for Q and state its truth table.	CO2	PO2	5
	c)	Design Full Adder circuit using 2 Half adders .	CO3	PO3	5
		OR			
6	a)	Simplify and realize using logic gates (i) $f(A, B, C) = A\bar{B}C + \bar{C} + BCA + BC$ (ii) $f(A, B, C) = \overline{AB} + \bar{B} + \overline{CA} + \bar{B}\bar{C}$	CO1	PO1	10
	b)	Analyze the below given logic circuit for an output Y when input C=1. Write expression at each stage	CO2	PO2	5
	c)	A logic circuit has 3 inputs A, B, C and one output Y. Y=B XNOR C when A=0, and Y=B when A=1. Design the logic circuit with minimum number of gates and implement using logic gates.	CO3	PO3	5
		UNIT - V			
7	a)	With a neat block diagram, explain the components of the basic communication System.	-	-	10
	b)	Compare 1G, 2G, 3G and 4G technologies of cellular communication.	-	-	10
