

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Branch: Common to all Branches

Course Code: 18EC1ESECE / 18EC2ESECE

Course: Elements of Electronics Engineering

Semester: I / II

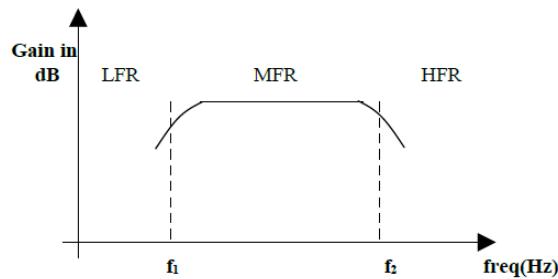
Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any may suitably assumed.

UNIT - I

1	a) Explain the forward and reverse characteristics of a Silicon Diode 5 b) With a neat circuit diagram and relevant waveforms, explain the operation of bridge rectifier. 8 c) Design a Zener diode voltage regulator to meet the following requirements: unregulated dc input voltage $V_i = 13$ Volts to 17 Volts Load current $I_L = 10\text{mA}$ Regulated output voltage $V_o = 10\text{V}$ Minimum Zener current $I_{Z\min} = 5 \text{ mA}$ Maximum power dissipation in Zener, $P_{Z\max} = 500 \text{ mW}$
---	---


OR

2	a) Derive the efficiency of a rectifier which has a ripple factor of 1.21 and PIV of individual diode is V_m . 6 b) Suggest a suitable method to reduce ripples in a rectifier circuit. 6 c) A Bridge rectifier is driving a load resistance of 100 ohms. It is driven by a source voltage of 230V, 50 Hz, Neglecting diode resistances, calculate i) average output voltage ii) average load current iii) frequency of output waveform iv) dc power output 8
---	---

UNIT - II

3	a) Explain input and output characteristics of transistor operating in common emitter configuration. 4 b) A voltage divider bias circuit has $V_{CC} = 15\text{V}$, $R_C = 2.7 \text{ K}\Omega$, $R_E = 2.2 \text{ K}\Omega$, $R_1 = 22 \text{ K}\Omega$, $R_2 = 12 \text{ K}\Omega$. Calculate V_E , V_C , I_C and V_{CE} . Draw the DC load line and mark the Q-point 8
---	---

c) Draw the circuit diagram of a Transistor amplifier which produces the following frequency response. Discuss need of all the passive elements used. 8

UNIT - III

4 a) Explain the working of a RC phase shift Oscillator 7
 b) In a transistor Hartley oscillator $L_1=5\text{mH}$, $L_2=10\text{mH}$, and $C=0.01\mu\text{F}$. Calculate the frequency of oscillations and the feedback factor. 6
 c) With a help of a neat circuit diagram explain the working of an op amp as a differentiator. Derive an expression for the output voltage. 7

UNIT - IV

5 a) Convert the following numbers as indicated below: 6
 i) $(365.217)_8 = (?)_2$
 ii) $(FACE)_{16} = (?)_{10}$
 b) Simplify the following expression and Realize using NOR Gates only 6

$$Y = (A + B)(A + \bar{B})(\bar{A} + B)$$

 c) Explain the operation of a full-adder and realize using basic gates. 8

OR

6 a) State and prove De-morgan's theorem 4
 b) Design a Full adder using 4:1 MUX 8
 c) With a logic diagram and Truth Table, explain the operation of JK Flip-flop 8

UNIT - V

7 a) Explain the Transceiver system used in Digital communication using suitable block diagram. 7
 b) Discuss evaluation of cellular communication. 7
 c) Illustrate with an example the principle of operation of IOT. 6
