

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 22EC1ESIEL / 22EC2ESIEL

Max Marks: 100

Course: Introduction to Electronics Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
1	a)	What is Regulated power supply? Explain with block diagram.			-	-	6
	b)	Define Amplifier. List the types of Amplifiers.			-	-	7
	c)	Deduce the relationship between various Transistor current and also α and β of a transistor. In a common emitter transistor circuit, if $\beta = 100$ and $I_B = 50\mu A$, compute the values of α , I_E and I_C .			CO1	PO1	7
			OR				
2	a)	Explain voltage regulator circuit using Zener diode.			-	-	6
	b)	Explain the working of Full - Wave Bi-Phase Rectifier with circuit diagram and wave form.			-	-	7
	c)	An amplifier produces an output voltage of 2 V for an input of 50 mV. If the input and output currents in this condition are, respectively, 4 mA and 200 mA, determine: (a) the voltage gain; (b) the current gain; (c) the power gain.			CO1	PO1	7
			UNIT - II				
3	a)	State the characteristics of an Ideal Op-Amp. How do the characteristics of a practical Op-Amp differ from those of the ideal Op-Amp.			-	-	5
	b)	Explain Ladder Network Oscillator with circuit diagram and relevant expression. Design a ladder network oscillator that uses three RC sections, $R = 10 K\Omega$. If the oscillator is to generate frequencies in the range from 1KHz to 100 KHz, what should be the range of C?			CO1	PO1	10
	c)	Identify the circuit shown in figure. When a sine wave of 1v Peak at 1000Hz is applied to the circuit with the following specification: $RF = 1k\Omega$ and $C1=0.33\mu F$, find its output waveform and its output equation.			CO2	PO2	5

UNIT - III				
4	a)	State and prove duality theorem	<i>CO1</i>	<i>PO1</i> 5
	b)	Analyze the logic circuit shown in fig. Determine the Boolean function for y and state its truth table. 	<i>CO2</i>	<i>PO2</i> 5
	c)	Simplify the following functions i) $F = \bar{A}B + \bar{A}\bar{C} + BC + A\bar{B}\bar{C}$ ii) $F = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}C$ iii) $F = xy' + x'y'z + xyz'$ iv) $X = a'b'c' + a'bc' + a'bc + ab'c + abc'$	<i>CO1</i>	<i>PO1</i> 10
OR				
5	a)	Discuss the universality of NAND and NOR gates	<i>CO1</i>	<i>PO1</i> 5
	b)	The rocket motor of an air-launched missile with three inputs (launch, Unsafe- height and target-lock), will operate if and only if any two inputs are high. Implement a suitable logic circuit with minimum logic gates	<i>CO2</i>	<i>PO2</i> 5
	c)	Simplify the following Boolean expression using Boolean Laws and Realize this expression with logic gates of your choice (i) $f(A, B, C) = A\bar{B}C + \bar{C} + BC$ (ii) $f(A, B, C) = \overline{\overline{AB} + \bar{B} + \bar{C}A}$	<i>CO1</i>	<i>PO1</i> 10
UNIT - IV				
6	a)	Explain the different configurations of 7-segment LED Display.	-	- 10
	b)	Explain the classification of embedded systems based on generation, complexity, deterministic behavior, triggering and performance requirements.	-	- 10
UNIT - V				
7	a)	Explain the different types of modulation techniques with relevant Waveforms. Mention the modulation index of AM and FM wave.	-	- 10
	b)	Calculate the Carrier swing, frequency deviation and modulation index for an FM signal which reaches a maximum frequency of 99.047MHz and a minimum frequency of 99.023 MHz. The frequency of the modulating signal is 7KHz.	<i>CO1</i>	<i>PO1</i> 4
	c)	Discuss various network topologies commonly used in computer communication networks.	-	- 6