

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

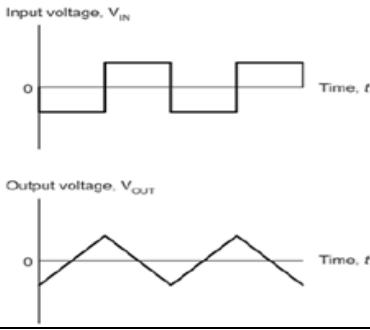
February / March 2025 Semester End Main Examinations

Programme: B.E.

Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.


Course Code: 22EC1ESIEL / 22EC2ESIEL

Max Marks: 100

Course: Introduction to Electronics Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Choice is in Unit I and III.

UNIT - I			CO	PO	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	The R-C smoothing filter in a 50 Hz mains operated half-wave rectifier circuit consists of $R_1 = 100 \Omega$ and $C_2 = 1,000 \mu F$. If 1 V of ripple appears at the input of the circuit, determine the amount of ripple appearing at the output.	<i>CO1</i>	<i>PO1</i>	5
		b)	It is required to increase the voltage of a halfwave rectifier from 'V' to '2V' volts. Determine the kind of circuit that will provide this functionality and explain its working with the help of a neat diagram.	<i>CO1</i>	<i>PO1</i>	5
		c)	Explain with the help of a circuit diagram the operation of a Zener diode voltage regulator.	-	-	10
OR						
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	2	a)	Identify and list the various regions of operation of a BJT.	<i>CO1</i>	<i>PO1</i>	2
		b)	The following measurements were made during a test on an amplifier: $V_{in} = 200 \text{ mV}$, $I_{in} = 1.5 \text{ mA}$, $V_{out} = 8 \text{ V}$, $I_{out} = 350 \text{ mA}$ Determine: (a) the voltage gain (in dB); (b) the current gain (in dB); (c) the power gain (in dB); (d) the input resistance. If the voltage gain of the amplifier increases by 30%, find the value of V_{out} for the same input voltage?	<i>CO1</i>	<i>PO1</i>	10
		c)	With a neat diagram, explain the input and output characteristics of a transistor in common emitter configuration.	-	-	8
UNIT - II						
3	a)	Analyze the input and output waveforms shown in the figure below. Identify the appropriate circuit used to obtain the output waveform from the input waveform and explain the same.	<i>CO2</i>	<i>PO2</i>	5	

	b)	Draw the circuit diagram of an OPAMP Summing and Difference Amplifiers and explain each one of them.	-	-	8
	c)	Draw and explain the OPAMP Ladder Network Oscillator.	-	-	7
		OR			
4	a)	What is an Oscillator and analyze the conditions for Oscillations	<i>CO2</i>	<i>PO2</i>	5
	b)	Draw the circuit diagram of an OPAMP Differentiator and Integrator and explain each one of them.	-	-	8
	c)	Draw and explain the OPAMP Wien bridge Oscillator	-	-	7
		UNIT - III			
5	a)	Perform the following conversions: (a) $(1.00011)_2 = ()_8 = ()_{16}$ (b) $(25EC.6A7)_{16} = ()_2 = ()_{10}$	<i>CO1</i>	<i>PO1</i>	8
	b)	Write the truth table for a 4-input system that indicates "TRUE" when majority of its inputs are "TRUE". Write the SOP expression / canonical minterm expression.	<i>CO2</i>	<i>PO2</i>	6
	c)	Implement Boolean expression for EX-NOR gate ($AB + \bar{A}\bar{B}$) using NOR Gate	<i>CO1</i>	<i>PO1</i>	6
		OR			
6	a)	Find the complement of the functions $F1 = \bar{x}y\bar{z} + \bar{x}\bar{y}z$ and $F2 = x(\bar{y}\bar{z} + yz)$, by applying DeMorgan's theorems	<i>CO1</i>	<i>PO1</i>	4
	b)	What characteristics identify a combinational circuit? Explain a Half-adder using a Truth Table. Provide the gate level implementation for the same.	<i>CO2</i>	<i>PO2</i>	10
	c)	Simplify (a) $Y = \bar{A}\bar{B}\bar{C} + \bar{A}B\bar{C} + A\bar{B}\bar{C} + AB\bar{C}$ (b) $Y = (A + C)(AD + A\bar{D}) + AC + C$	<i>CO1</i>	<i>PO1</i>	6
		UNIT - IV			
7	a)	Compare RISC and CISC Processors/Controllers	-	-	6
	b)	Identify the appropriate input or output transducer in the following situations (name & distinguish them) and describe the working principle [physical quantity]: i) Dairy Industry (Milk production – pasteurization) ii) Automotive Car Audio System Control iii) Automotive Car Seat Adjustment System	<i>CO2</i>	<i>PO2</i>	6
	c)	Explain the various Classification of Embedded Systems.	-	-	8

OR					
8	a)	Comment on Von Neumann and Harvard Architectures with relevant figures.	-	-	6
	b)	To display 2022 in a seven-segment, how many 7-segment displays are required? And also write the Binary and hexadecimal equivalent code for each.	<i>CO2</i>	<i>PO2</i>	8
	c)	Define actuator and discuss briefly the LEDs.	-	-	6
UNIT - V					
9	a)	Explain the concept of cellular communication system.	-	-	10
	b)	Identify briefly explain the common network topologies.	-	-	5
	c)	List networks characterized by their physical capacity or organizational purpose. Very briefly explain each one.	-	-	5
OR					
10	a)	Define Noise in communication system. Explain the various key parameters used to measure the quality of the received signal?	-	-	8
	b)	Explain different modulation techniques with neat waveforms?	-	-	12