

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## August 2023 Semester End Make-Up Examinations

**Programme: B.E.**

**Branch: Common to all Branches**

**Course Code: 22EC1ESIEL**

**Course: Introduction to Electronics Engineering**

**Semester: I**

**Duration: 3 hrs.**

**Max Marks: 100**

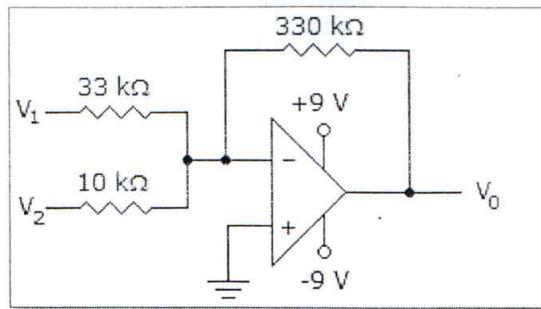
**Date: 14.08.2023**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

### UNIT - I

|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                             | a) Explain the working of Full - Wave Bi-Phase Rectifier with capacitor filter with the help of circuit diagram and wave form. <b>06</b> |
| b) With a neat diagram, explain the basic working of an NPN transistor: Deduce the relationship between various Transistor current and also $\alpha$ and $\beta$ of a transistor. In a common emitter transistor circuit, if $\beta = 100$ and $I_B = 50\mu A$ , compute the values of $\alpha$ , $I_E$ and $I_C$ . <b>10</b> |                                                                                                                                          |
| c) If a 9 V zener diode is to be used in a simple shunt regulator circuit to supply a load having a nominal resistance of $300\Omega$ , determine the maximum value of series resistor for operation in conjunction with a supply of 15 V. <b>04</b>                                                                          |                                                                                                                                          |

### OR


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a) Explain voltage regulator circuit using Zener diode. <b>06</b> |
| b) What is Regulated power supply? Explain with a neat block diagram. <b>10</b><br>The following data were obtained during a load test carried out on a d.c. power supply:<br>Output voltage (no-load) = 8.5 V; Output voltage (800 mA load) = 8.1 V<br>Determine the output resistance of the power supply and estimate the output voltage at a load current of 400 mA.<br>Output voltage (a.c. input: 230 V) = 15 V, Output voltage (a.c. input: 190 V) = 14.6 V.<br>Determine the regulation of the power supply and estimate the output voltage when the input voltage is 245 V. |                                                                   |
| c) A half-wave rectifier is fitted with an R-C smoothing filter comprising $R = 200\Omega$ and $C = 50\mu F$ . If 2 V of 400 Hz ripple appear at the input of the circuit, determine the amount of ripple appearing at the output. <b>04</b>                                                                                                                                                                                                                                                                                                                                         |                                                                   |

### UNIT - II

|                                                                                                                                                    |                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 3                                                                                                                                                  | a) What is an Oscillator and mention conditions for Oscillations. <b>04</b> |
| b) State the characteristics of an Ideal Op-Amp. How do the characteristics of a practical Op-Amp differ from those of the ideal Op-Amp. <b>06</b> |                                                                             |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) Calculate the output voltage of the circuit shown in figure, if  $V_1 = -0.2V$  and  $V_2 = 0V$ . 06



d) The parameters of a crystal fitted in a crystal oscillator are as follows: 04  
 $L = 0.4H$ ,  $C = 0.08pF$ ,  $C_M = 1pF$  and  $R = 6k\Omega$ . Determine  
 (i) The series resonant frequency  
 (ii) The parallel resonant frequency

### UNIT - III

4 a) State and prove duality theorem. 05  
 b) If the variables A, B and C can take only the values 0 and 1, prove the following identities of Boolean algebra 10  
 i.  $\bar{A}BC + A\bar{B}\bar{C} + ABC + A\bar{B}\bar{C} = BC + A\bar{C}$   
 ii.  $AB + C(\bar{A} \odot \bar{B}) = AB + BC + CA$   
 iii.  $\bar{X}\bar{Y}Z + \bar{X}\bar{Y}\bar{Z} + \bar{X}Y\bar{Z} = \bar{X}(\bar{Y} + \bar{Z})$   
 iv.  $\bar{A}B\bar{C} + B\bar{C}D + AD = AD + B\bar{C}$   
 c) Design a circuit that has three bit binary input and a single output(Z) specified as follows: 05  
 $Z = 0$  ; when the input is less than  $(5)_{10}$   
 $Z = 1$  ; otherwise

### OR

5 a) State and prove De Morgan's law. 05  
 b) Perform the following 10  
 (i)  $(1A0.65)_{16} = ( )_2 = ( )_{10}$  ; (ii)  $(876.02)_{10} = ( )_{16} = ( )_8$   
 c) The rocket motor of an air-launched missile with three inputs (launch, Unsafe-height and target-lock), will operate if and only if any two inputs are high. Design a suitable logic circuit with minimum logic gates. 05

### UNIT - IV

6 a) Differentiate between Microprocessor and Microcontroller. 05  
 b) Define transducers and give the classification of transducers with examples. 05  
 c) To display 2022 in a seven-segment, how many 7-segment displays are required? And also write the Binary and hexadecimal equivalent code for each. 10

## UNIT - V

7 a) Explain the different types of modulation techniques with relevant Waveforms. Mention the modulation index of AM and FM wave. **08**

b) The initial SNR measured at the transmitter was 20 dB. In order to combat the channel conditions, the signal power was doubled prior to transmission. What is the new SNR at the transmitter? **06**

c) Discuss the components of a Transmitter with relevant diagram and explain each of its function. **06**

\*\*\*\*\*