

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 22EC1ESBEC / 22EC2ESBEC

Max Marks: 100

Course: Basic Electronics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		
			CO	PO	Marks
1	a)	Explain the forward and reverse biased condition of PN junction Diode.	-	-	05
	b)	Derive the expression for Ripple factor and efficiency of Half-wave rectifier.	CO 1	PO1	10
	c)	Design a Zener regulator for following specification: Load current $I_L = 20\text{mA}$. Output voltage $V_0 = 5\text{ V}$, Zener wattage $P_z = 500\text{mW}$ Input voltage $V_i = 12\pm 2\text{V}$ and $I_{Z\min} = 8\text{ mA}$.	CO 3	PO3	05
			UNIT - II		
			-	-	05
2	a)	What is a Regulated power supply? Explain with a block diagram	-	-	05
	b)	Derive the expression for Ripple factor and efficiency of Bridge rectifier.	CO 1	PO1	10
	c)	For a Silicon Diode working at a Temperature of 250C, the forward voltage applied across the diode is 0.5V, determine its forward current, if the reverse saturation current is 10nA.	CO 1	PO1	05
			OR		
			-	-	10
3	a)	With a neat diagram, explain the input and output characteristics of a transistor in common Base configuration.	-	-	10
	b)	Derive the expression for gain of positive and negative feedback systems. An amplifier has mid band gain of 125 and a bandwidth of 250KHz. If 4% negative feedback is introduced, find the new bandwidth and gain. If bandwidth is restricted to 1MHz, find the feedback ratio.	CO 1	PO1	10
			UNIT - III		
			-	-	05
4	a)	Explain the block of the operational amplifier with a neat diagram.	-	-	05
	b)	The equivalent electrical parameter of a crystal oscillator is $L=3\text{H}$, $C=0.05\text{pF}$, $C_p=6\text{pF}$, and $R=1\text{K}\Omega$. Determine the series resonant frequency and the percentage by which the parallel resonant frequency exceeds the series resonance frequency.	CO 1	PO1	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Calculate the output voltage of the circuit shown in figure below, if $V_1 = -300$ mV and $V_2 = 500$ mV. Also mention how the op-amp is Configured.</p>	<i>CO 2</i>	<i>PO2</i>	07
		UNIT – IV			
5	a)	Implement half adder using basic gates	<i>CO 1</i>	<i>PO1</i>	05
	b)	Perform the following conversion (i) $(45.69)_{10} = ()_2 = ()_H$ (ii) $(9AEF)_H = ()_{10} = ()_2 = ()_8$	<i>CO 1</i>	<i>PO1</i>	10
	c)	A logic circuit has 3 inputs A, B, C and one output Y. Y=B XOR C when A=0, and Y=C when A=1. Simplify the output expression and realize the same using logic gates.	<i>CO 2</i>	<i>PO2</i>	05
		OR			
6	a)	Analyze the logic circuit shown in fig. Determine the Boolean function for y and state its truth table	<i>CO 2</i>	<i>PO2</i>	06
	b)	Design Full Adder circuit using 2 Half adders.	<i>CO 3</i>	<i>PO3</i>	08
	c)	Design a logic circuit using a minimum number of NOR gates to implement the following expression. $F = \bar{A}B + \bar{B}C + BC + A\bar{B}\bar{C}$	<i>CO 3</i>	<i>PO3</i>	06

UNIT – V					
7	a)	With a neat block diagram, explain the components of the basic communication System.	-	-	06
	b)	Define Signal to Noise Ratio and Noise Factor with relevant equation. At a receiver of a communication system, the signal and noise voltages are given as 3.5mV and 0.75mV respectively. Determine the SNR in dB.	CO 1	POI	08
	c)	Discuss different types of computer communication networks based on their size.	-	-	06

SUPPLEMENTARY EXAMS 2024