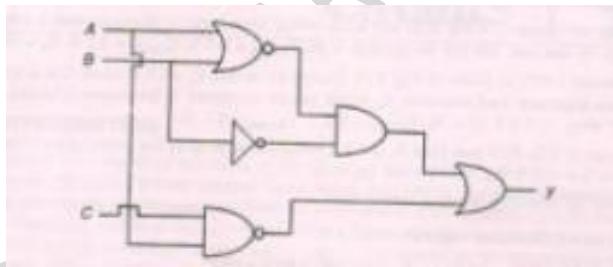


B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September 2024 Supplementary Examinations**Programme: B.E.****Semester: I / II****Branch: Common to all Branches****Duration: 3 hrs.****Course Code: 22EC1ESBEC / 22EC2ESBEC****Max Marks: 100****Course: Basic Electronics**

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.


UNIT – I			CO	PO	Marks
1	a)	Explain the V-I characteristics of PN junction diode with Shockley's equation.	-	-	6
	b)	Derive the expression for Ripple factor and efficiency of Half-wave rectifier.	<i>CO1</i>	<i>PO1</i>	8
	c)	The diode current is 0.6mA when the applied voltage is 500mV. Determine the η , assume $V_T=25mV$.	<i>CO1</i>	<i>PO1</i>	6
OR					
2	a)	Explain the forward and reverse biased condition of PN junction Diode.	-	-	4
	b)	Arrive at the expression for Ripple factor and efficiency of Bridge rectifier.	<i>CO1</i>	<i>PO1</i>	10
	c)	For a Zener regulator $R=2.2K\ \Omega$, $R_L=1K\ \Omega$, calculate the range of input voltage for which output will remain constant. $V_Z=6.1V$, $I_{Zmin}=2.5mA$, $I_{Zmax}=25mA$, $R_z=0\ \Omega$. 6 Marks	<i>CO1</i>	<i>PO1</i>	6
UNIT – II					
3	a)	Deduce the relationship between various Transistor current and also α and β of a transistor. In a common emitter transistor circuit, if $\beta = 100$ and $I_B = 50\mu A$, compute the values of α , I_E and I_C .	<i>CO1</i>	<i>PO1</i>	10
	b)	With a neat diagram, explain the input and output characteristics of a transistor in common emitter configuration.	-	-	10
UNIT - III					
4	a)	Derive the expression of the output of an Op-Amp Integrator with a neat circuit diagram.	<i>CO1</i>	<i>PO1</i>	5
	b)	Draw the output waveform of an Op-Amp <ul style="list-style-type: none"> i. If square wave is given at the differentiator input. ii. If triangular wave is given at the differentiator input 	<i>CO1</i>	<i>PO1</i>	5

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
 Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>i .The transistor RC phase shift oscillator has three RC sections with $C = 0.01\mu F$ and $R = 6.3 K\Omega$. If $R_L = 4.7k\Omega$. Determine the frequency of oscillation.</p> <p>ii. What is the frequency of Hartley oscillator if the total inductance of L_1 and L_2 is $50mH$ and the capacitance of the resonant circuit is $200pF$?</p>	CO 1	PO1	5 +5
--	----	--	------	-----	------

UNIT - IV

5	a)	With the state table, explain the working of SR Flip-flop realized using NAND gates.	-	-	5
	b)	<p>Perform the following conversion</p> <p>(i) $(25.6)_{10} = ()_2 = ()_H$</p> <p>(ii) $(7BEF)_H = ()_{10} = ()_2 = ()_8$</p> <p>(iii) $(57279)_{10} = ()_{16}$</p>	CO 1	PO1	10
	c)	Design Full Adder circuit using 2 Half adders.	CO 3	PO3	5
OR					
6	a)	With the state table, explain the working of JK Flip-flop realized using NAND gates.	-	-	5
	b)	<p>Perform the following</p> <p>i. $(532.65)_{10} = ()_{16}$</p> <p>ii. $(250.67)_{16} = ()_2 = ()_{10}$</p> <p>iii. $(952.01)_{10} = ()_{16} = ()_8$</p>	CO1	PO1	10
	c)	Analyze the logic circuit shown in figure below. Determine the Boolean function for y and state its truth table.	CO2	PO2	5

UNIT – V

7	a)	Explain the different types of modulation techniques with relevant Waveforms. Mention the modulation index of AM and FM wave.	-	-	4
	b)	A 100MHz carrier wave is frequency modulated by a 10KHz sinusoidal modulating signal. If the maximum frequency deviation is 50KHz, Compute the modulation index and also find Carrier Swing.	CO1	PO1	4
	c)	Write a short note on (i) Cellular communication system (ii) computer communication network. (iii) Compare 1G, 2G, 3G and 4G technologies of cellular communication.	-	-	12
