

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

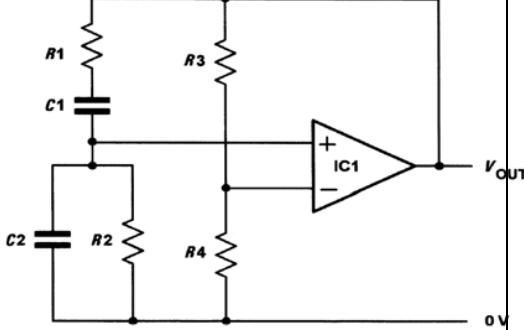
Programme: B.E.

Semester: I / II

Branch: Common to all Branches

Duration: 3 hrs.

Course Code: 22EC1ESIEL / 22EC2ESIEL


Max Marks: 100

Course: Introduction to Electronics Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
1	a)	Identify the circuit that converts one half cycle of the input alternating current (ac) to output direct current (dc). Explain it's working with a suitable circuit diagram and waveforms.	CO2	PO2	06			
	b)	Deduce the relationship between various transistor current and also α and β of a transistor. In a common emitter transistor circuit, if $\beta = 100$ and $I_B = 50\mu A$, compute the values of α , I_E and I_C .	CO1	PO1	09			
	c)	A 5 V Zener diode has a maximum rated power dissipation of 500 mW. If the diode is to be used in a simple regulator circuit to supply a regulated 5 V to a load having a resistance of 400Ω , determine a suitable value of series resistor for operation in conjunction with a supply of 9 V.	CO1	PO1	05			
			OR					
2	a)	Identify the circuit whose output voltage is double the input voltage and explain it's working with the help of a diagram.	CO2	PO2	06			
	b)	Analyze the waveforms shown in Fig. 1 and identify a suitable circuit that accepts waveform (a) as input and gives the waveform (b) as output. Note: The circuit should use minimum number of diodes.	<p>Fig. 1</p>			CO2	PO2	06
	c)	The following measurements were made during a test on an amplifier:	CO1	PO1	08			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>$V_{in} = 200 \text{ mV}$, $I_{in} = 1.5 \text{ mA}$, $V_{out} = 8 \text{ V}$, $I_{out} = 350 \text{ mA}$</p> <p>Determine:</p> <ol style="list-style-type: none"> the voltage gain (in dB); the current gain (in dB); the input resistance. <p>If the voltage gain of the amplifier increases by 30%, find the value of V_{out} for the same input voltage?</p>				
		UNIT - II				
3	a)	<p>Define the following with respect to Op-Amp</p> <ol style="list-style-type: none"> Open loop gain Input Resistance Input offset voltage 	-	-	06	
	b)	<p>Draw the circuit diagram and corresponding output waveform of an Op-Amp circuit</p> <ol style="list-style-type: none"> If square wave is given at the differentiator input. If square wave is given at the integrator input 	CO2	PO2	10	
	c)	<p>Fig. 2 shows the circuit of a Wien bridge oscillator based on an operational amplifier. If $C_1 = C_2 = 100 \text{ nF}$, determine the output frequencies produced by this arrangement when</p> <ol style="list-style-type: none"> $R_1 = R_2 = 1 \text{ k}\Omega$ $R_1 = R_2 = 6 \text{ k}\Omega$. 	<p>Fig. 2 Sine wave oscillator based on Wien bridge network</p>	CO1	PO1	04
		UNIT - III				
4	a)	State and prove De Morgan's law.	CO1	PO1	08	
	b)	<p>Perform the following conversions</p> <ol style="list-style-type: none"> $(1011101101110001.10111101)_2 = ()_{16}$ $(4EC.6A)_{16} = ()_8$ $(56.12)_{10} = ()_2$ 	CO1	PO1	06	
	c)	Design a logic circuit using minimum number of basic gates to implement the following expression.	CO3	PO3	06	
		$f(W, A, B, C) = WAB\bar{C} + AB\bar{C} + A\bar{B}\bar{C} + A\bar{B}C$				
		OR				
5	a)	Prove the universality of NAND gate.	CO1	PO1	05	
	b)	Implement full-adder using half-adders. Give the necessary truth-tables and Boolean expressions.	CO1	PO1	10	
	c)	Simplify the following functions	CO2	PO2	05	
		<ol style="list-style-type: none"> $F = \bar{A}B + \bar{A}C + BC + A\bar{B}C$ $F = \bar{A}B\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}C$ 				
		UNIT - IV				
6	a)	Differentiate between Microprocessor and Microcontroller.	-	-	05	

	b)	Analyze the working of instrumentation systems with the aid of a block diagram	CO2	PO2	06
	c)	How many 7-segment display units are required to display “EASY”? Write the Binary and hexadecimal equivalent code for each if common-CATHODE 7-segment display is used and give the corresponding circuit diagram.	CO1	PO1	09
		UNIT - V			
7	a)	The initial SNR measured at the transmitter was 20 dB. In order to combat the channel conditions, the signal power was doubled prior to transmission. What is the new SNR at the transmitter?	CO1	PO1	06
	b)	A 100MHz carrier wave is frequency modulated by a 10KHz sinusoidal modulating signal. If the maximum frequency deviation is 50KHz, find the modulation index. Also find Carrier Swing?	CO1	PO1	06
	c)	Explain the different types of modulation techniques with relevant Waveforms.	-	-	08
