

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCAEC

Course: Analog Electronic Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 15.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Determine the voltage V_{CEQ} and I_{CQ} for the voltage divider configuration of the circuit shown in figure 1 10

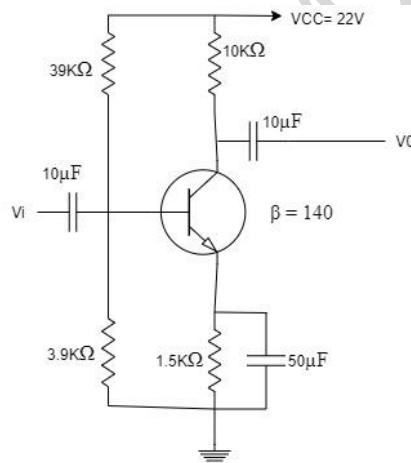


Figure 1

b) Draw the r_e model for a voltage divider bias configuration and derive expressions for input impedance, output impedance and voltage gain. 10

UNIT - II

2 a) A transformer coupled class A power amplifier supplies power to 80Ω load connected across the secondary of a step down transformer having a turns ratio of 5:1. Determine the maximum power output for a zero signal collector current of 120mA 06

b) With a neat block diagram derive expressions for gain with feedback, input impedance and output impedance for voltage series feedback configuration. 08

c) Calculate the total harmonic distortion for an output signal having fundamental amplitude of 2.5V, second harmonic amplitude of 0.25V, third harmonic amplitude of 0.1V and fourth harmonic amplitude of 0.05V. 06

UNIT - III

3 a) Derive an expression for drain current of NMOS transistor that operates in
 i) Triode region ii) Saturation region. 10

b) For the circuit shown in Figure 2, let Q1 and Q2 have $V_t=0.6V$,
 $\mu_nC_{ox}=200\mu A/V^2$, $L_1=L_2=0.8\mu m$, $W_1 = 8\mu m$
 i) Find the value of R required to establish a current of 0.2mA in Q1
 ii) Find W_2 and a new value of R_2 so that Q2 operates in saturation region
 with a current of 0.5mA and a drain voltage of 1V. 10

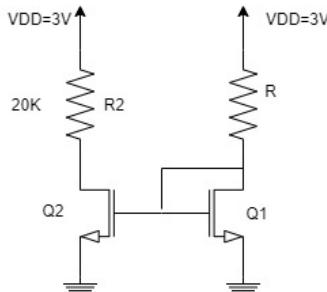


Figure 2

OR

4 a) Design the circuit shown in the Figure.3 so that the MOSFET operates at $I_D=0.4mA$ and $V_D = +0.5V$. The NMOS transistor has $V_t = 0.7v$, $\mu_nC_{ox} =100\mu A/V^2$ $L=1\mu m$ and $W =32\mu m$. Neglect the channel length modulation effect (assume $\lambda =0$). 10

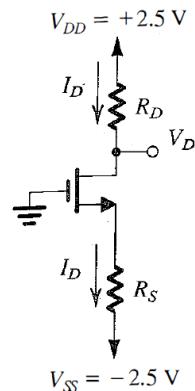


Figure 3

b) Describe different types of biasing in MOS amplifier circuits. 10

UNIT - IV

5 a) Derive an expression for transconductance and voltage gain of a common source NMOS amplifier. 10

b) Derive an expression for i) input impedance ii) output impedance iii) voltage gain and overall voltage gain for a common source amplifier with source resistance. 10

UNIT - V

6 a) Find V_o for the circuit shown in figure 4.

10

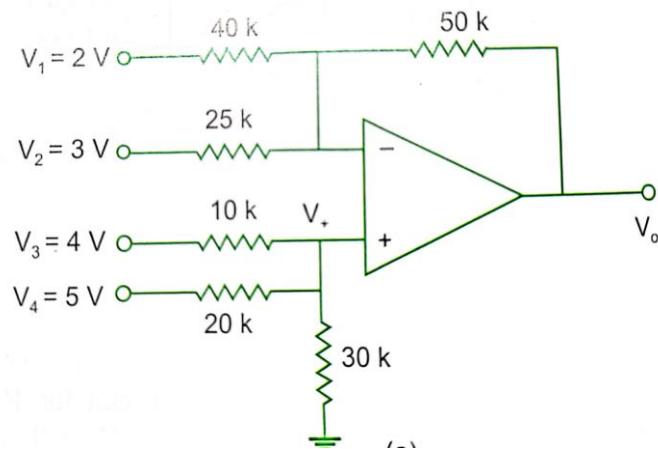


Figure 4

b) With a neat functional diagram describe the working of 555 Timer for astable operation.

10

OR

7 a) Describe the basic operation of Phase Locked Loop(PLL). 10

b) Design an adder circuit using an Opamp to obtain the output expression as: $V_o = -[(0.4V_1 + 0.1V_2 + 20V_3)]$. 04

c) Describe the use of 555 Timer as Schmitt trigger. 06
