

B.M.S. College of Engineering, Bengaluru-560019

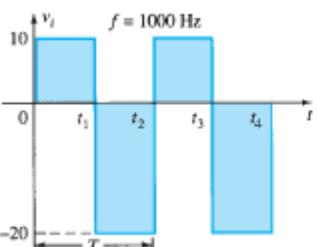
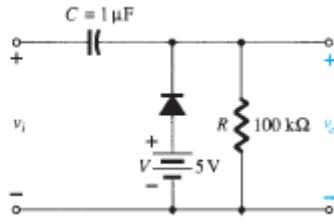
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCAEC



Course: Analog Electronic Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Analyze the given circuit in Fig 1, determine the output voltage and plot the output waveform for the circuit given below:</p> <p>i) Using ideal diode ii) Using Si diode</p>	CO3	PO 2	10
	b)	<p>Deduce the small signal r_e equivalent model for the voltage divider configuration circuit. Also obtain the expressions for A_v, z_i and z_o</p>	CO 2	PO 1	10
UNIT - II					
2	a)	<p>Derive expressions for gain, input resistance and output resistance of voltage shunt feedback with block representation approach.</p>	CO 2	PO 1	10
	b)	<p>What is the drawback of the Class B Power Amplifier? Explain the measures to overcome the same with suitable diagrams</p>	CO 1	-	5
	c)	<p>Suggest a suitable method to increase the efficiency of series fed Class A Power Amplifier and deduce an expression to prove the efficiency is higher than Series fed Class A type.</p>	CO 2	PO 1	5
UNIT - III					
3	a)	<p>An enhancement type NMOS transistor with $V_t=0.7V$ conducts a current $I_D=100\mu A$ when $V_{GS}=V_{DS}=1.2V$. Find the value of I_D for $V_{GS}=1.5V$ and $V_{DS}=3V$. Also calculate the value of the drain to source resistance R_{DS} for small V_{DS} and $V_{GS}=3.2V$.</p>	CO 2	PO 1	10
	b)	<p>Derive an expression for drain current of NMOS transistor that operates in i) Triode region ii) Saturation region</p>	CO 2	PO 1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Determine and comment on the drain currents for a n-channel MOSFET with $t_{ox} = 20$ nm, $\mu_n = 650$ cm 2 /V.s, $V_t = 0.8$ V, and $W/L = 10$. (a) $V_{GS} = 5$ V and $V_{DS} = 1$ V. (b) $V_{GS} = 2$ V and $V_{DS} = 1.2$ V. (c) $V_{GS} = 5$ V and $V_{DS} = 0.2$ V. (d) $V_{GS} = V_{DS} = 5$ V	<i>CO 2</i>	<i>PO 1</i>	10
	b)	With the help of a graphical construction, obtain the transfer characteristics and deduce the condition for operation in the saturation region of a CS amplifier.	<i>CO 2</i>	<i>PO 1</i>	10
UNIT - IV					
5	a)	Develop a T equivalent model of a MOSFET with necessary equations and diagrams	<i>CO 2</i>	<i>PO 1</i>	10
	b)	Analyze the three different relationships for determining transconductance g_m .	<i>CO 3</i>	<i>PO 2</i>	10
UNIT - V					
6	a)	Deduce an expression for gain of a non-inverting amplifier. Denote the condition and describe the condition for a voltage follower	<i>CO 2</i>	<i>PO 1</i>	10
	b)	For a certain application it is required to convert a voltage signal to proportional output current. Identify the circuit which performs the function and describe the different types.	<i>CO 2</i>	<i>PO 1</i>	10
OR					
7	a)	Determine V_o for the adder subtractor circuit shown in Fig-2	<i>CO 2</i>	<i>PO 1</i>	10
	b)	Derive an expression for time period "T" for monostable multivibrator using 555. Describe the working with necessary timing diagram.	<i>CO 2</i>	<i>PO 1</i>	10
