

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2024 Supplementary Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 22EC3PCAEC

Course: Analog Electronic Circuits

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Draw the transfer characteristics for basic parallel clipper with positive clipping, using reference voltage V_R . Let the cut in voltage of the diode be V_γ . **04**
 b) With relevant equations analyze voltage divider bias circuit using exact analysis approach. **10**
 c) Draw a small signal model for the circuit shown in fig 1c and derive an expression for voltage gain and input impedance. **06**

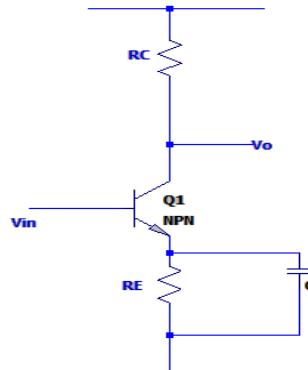


Fig 1c

UNIT - II

2 a) Derive an expression for input and output impedance with feedback for a current shunt feedback amplifier. **06**
 b) For the voltage series feedback amplifier shown in fig 2b, find R_{if} , A_f , R_{of} . Let $R_{id}=200\text{K}\Omega$, $R_L=30\text{ K}\Omega$, $\mu=10^3$, $r_0=5\text{ K}\Omega$, $R_S= 10\text{ K}\Omega$. **10**

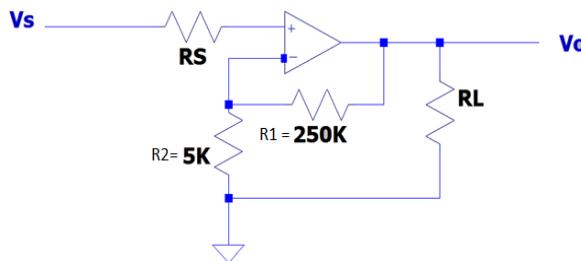


Fig 2b

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) Prove with a neat circuit diagram the efficiency of a transformer coupled amplifier is 50%. **04**

UNIT - III

3 a) Derive an expression for drain current in linear region and saturation region for a nMOS transistor. **06**
 b) Find R_1 , R_2 , R_d and maximum R_d to operate the device in saturation for the circuit shown in fig 3b. **10**

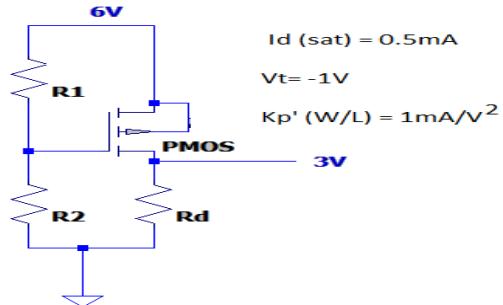


Fig 3b

c) Find R_D and R_S for the circuit shown in fig 3c. Assume $I_D = 0.5\text{mA}$, $V_t = 0.8\text{V}$, $\mu_n C_{ox} = 200\mu\text{A/V}^2$, $\frac{W}{L} = 20$ **04**

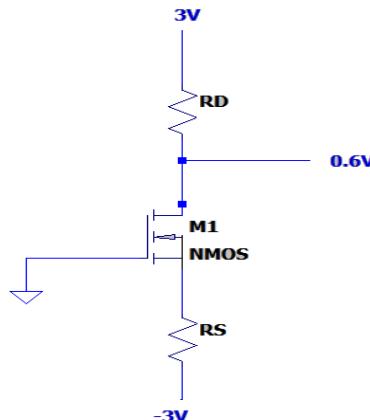


Fig 3c

OR

4 a) Explain the working of nMOS transistor under the following voltage conditions:
 (i) $V_{GS} < V_t$
 (ii) $V_{GS} > V_t$ and $V_{DS} < (V_{GS} - V_t)$
 (iii) $V_{GS} > V_t$ and $V_{DS} > (V_{GS} - V_t)$

b) Find I_{Dp} , I_{Dn} and V_0 for the circuit shown in fig 4b when (i) $V_i = 0\text{V}$ (ii) $V_i = 2.5\text{V}$ (iii) $V_i = -2.5\text{V}$. Let $k_n' (W/L)n = k_p' (W/L)p = 1\text{mA/V}^2$, $V_{tn} = -V_{tp} = 1\text{V}$. **10**

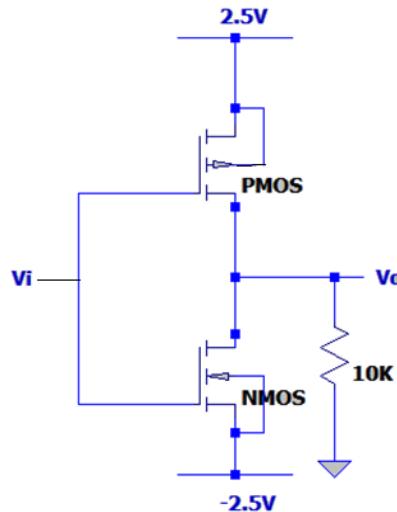


Fig 4b

c) Write a note on MOS conducting in sub threshold region.

04

UNIT - IV

5 a) Find I_D , g_m , $\frac{V_o}{V_i}$, R_i , $\frac{V_o}{V_s}$ and R_o for the circuit shown in fig 5a. Let $k_n'(W/L) = 1.2 \text{ mA/V}^2$, $V_t = 0.5\text{V}$ and $\lambda=0$.

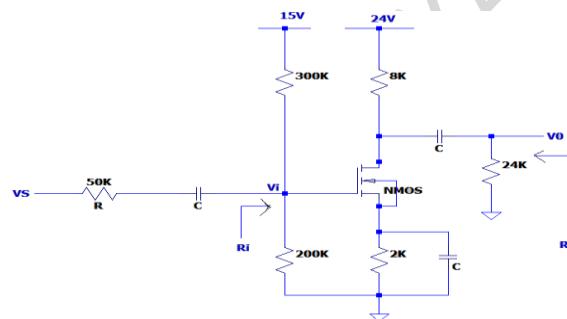


Fig 5a

b) Draw a circuit of Wilson MOS mirror and derive an expression for output impedance.

10

UNIT - V

6 a) Design a low and high voltage regulator using IC723.

10

b) Design an instrumentation amplifier circuit, to provide a gain that can be varied over the range of 2 to 1000 utilizing a $100 \text{ K}\Omega$ variable resistance.

10

OR

7 a) With a neat circuit explain shunt regulator using Opamp. List its limitations.

10

b) Suggest a suitable circuit to generate a symmetric square wave generator. Deduce an expression for the total time period for the same.

10
