

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## August 2023 Semester End Make-Up Examinations

**Programme: B.E.**

**Branch: Electronics and Communication Engineering**

**Course Code: 22EC3PCAEC**

**Course: Analog Electronic Circuits**

**Semester: III**

**Duration: 3 hrs.**

**Max Marks: 100**

**Date: 17.08.2023**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

### UNIT - I

1 a) What is Transistor biasing? Mention the requirements for biasing a transistor. **05**  
 b) Draw the circuit diagram of common Emitter voltage divider bias configuration and derive the expression for input impedance, output impedance, voltage gain and current gain, using  $r_e$  model. **08**  
 c) Determine the dc bias voltage  $V_{CE}$  and the current  $I_C$  for the voltage divider bias configuration given  $R_1 = 39 \text{ k}\Omega$ ,  $R_2 = 10 \text{ k}\Omega$ ,  $R_C = 3.9 \text{ k}\Omega$ ,  $R_E = 1.5 \text{ k}\Omega$ ,  $V_{CC} = 22\text{V}$  and  $\beta = 100$ . Assume Si transistor. **07**

### UNIT - II

2 a) With a neat circuit diagram, explain the operation of complementary symmetry Class B push-pull amplifier and show that its maximum conversion efficiency is 78.5%. **06**  
 b) A transformer-coupled class A amplifier drives a  $16 \Omega$  speaker through a 3.87:1 transformer. Using a power supply of  $V_{CC} = 36 \text{ V}$ , the circuit delivers 2 W to the load. Calculate: (i)  $P_{(ac)}$  across transformer primary. (ii)  $V_{L(ac)}$ . (iii)  $V_{(ac)}$  at transformer primary. (iv) The rms values of load and primary current. **04**  
 c) Obtain the expression for gain, input resistance and output resistance for a voltage series feedback amplifier. **10**

### UNIT - III

3 a) Explain the structure of enhancement type MOSFET and its operation. **12**  
 b) Determine the values of  $R_S$  and  $R_D$  for the circuit shown in fig 1 so that the transistor operates at  $V_{DD} = -V_{SS} = 2.5\text{V}$ ,  $I_D = 0.3 \text{ mA}$  and  $V_D = +0.4 \text{ V}$ . The NMOS transistor has  $V_t = 1 \text{ V}$ ,  $\mu_n C_{ox} = 60 \mu\text{A/V}^2$  and  $W/L = 40$ . Neglect the channel-length modulation effect (i.e., assume that  $\lambda = 0$ ). **08**

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

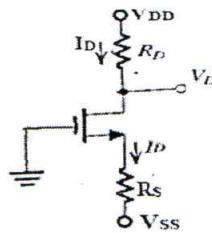



fig 1

OR

4 a) Write short notes on (i) Complementary MOS (ii) MOSFET amplifier configurations. 10  
 b) State the disadvantages of fixed  $V_{GS}$  biasing technique and explain how stability of operating point is achieved in drain to gate feedback resistor biasing technique in a MOSFET amplifier. 10

**UNIT - IV**

5 a) Analyze the circuit of common drain amplifier and derive the expressions for no-load voltage gain, overall voltage gain, input resistance and output resistance. 08  
 b) For the circuit shown in figure 2, derive the expression for  $R_{in}$ ,  $R_o$ ,  $A_v$  and  $A_{vo}$  using T- Model. 06

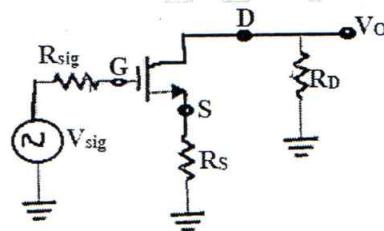



Figure 2

c) Explain the operation of Wilson MOS Mirror. 06

**UNIT - V**

6 a) With a neat circuit diagram and relevant equations, explain the operation of instrumentation amplifier. 08  
 b) Implement the equation  $V_o = 3V_1 + 6V_2 - V_3$  using inverting op-amps. 06  
 c) Show how op-amp can be used as a logarithmic amplifier. 06

OR

7 a) With a neat block diagram explain the operation of PLL. Also define (i) Lock-in range (ii) Pull in time (iii) Capture range. 08  
 b) Mention the important characteristics and explain the performance parameters of three terminal IC regulators. 07  
 c) Design an Astable multivibrator using 555 timer to provide output frequency of 1 kHz with a duty cycle of 60%. The capacitor used has a nominal value of  $0.1\mu F$ . 05

\*\*\*\*\*