

B.M.S. College of Engineering, Bengaluru-560019

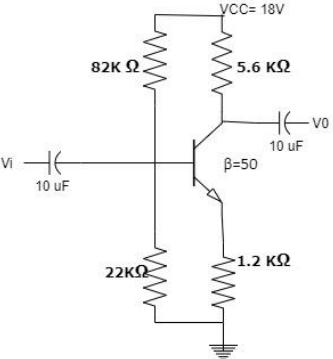
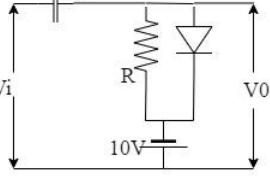
Autonomous Institute Affiliated to VTU

June / July 2024 Semester End Make-Up Examinations

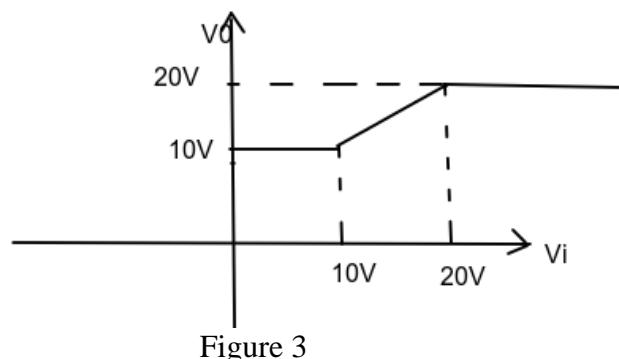
Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC3PCAEC



Course: Analog Electronic Circuits

Semester: III


Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Determine the levels of I_{CQ} and V_{CEQ} for the voltage divider bias circuit shown in the figure 1</p> <p>Figure 1</p>	CO 2	PO 1	6
	b)	<p>Analyze the circuit shown in Figure 2 and sketch the input and output voltage waveform assuming an ideal diode. ($V_i = 20\sin\omega t$)</p> <p>Figure 2</p>	CO3	PO2	06
	c)	<p>Draw the r_e model for a voltage divider bias configuration and derive expressions for input impedance, output impedance and voltage gain.</p>	CO2	PO1	08
OR					
2	a	<p>For the transfer characteristics shown in figure3 identify and analyze the circuit also obtain the output voltage waveform if the input voltage is $50\sin\omega t$, (consider ideal diodes)</p>	CO2	PO2	06

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

b For the circuit shown in the figure 4. determine the following parameters if $r_0 = \infty$ and for $r_0 = 50\text{K}\Omega$

i) r_e ii) Z_i iii) Z_0 iv) A_v



Figure 4

c Determine output voltage v_o for the network of Figure. 5 for the input indicated, sketch the input and output voltage waveform.

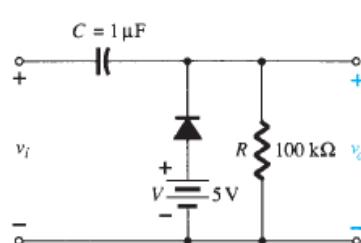
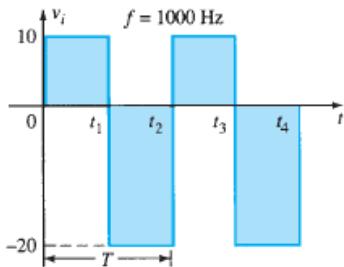



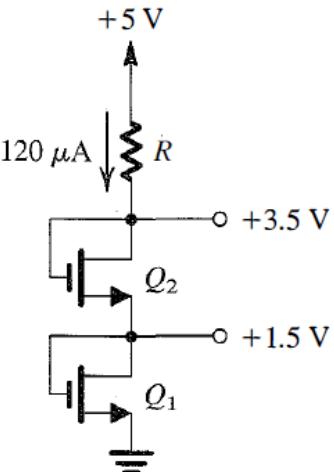
Figure 5

UNIT - II

3 a) With a neat block diagram derive the expressions for gain with feedback, input impedance and output impedance for current series feedback configuration

CO3

PO2


10

b) Calculate gain, input and output admittance for current series feedback amplifier with $A = -300$, $R_i = 1.5\text{K}\Omega$, $R_o = 50\text{K}\Omega$ and feedback fraction $\beta = -1/15$

CO2

PO1

04

	c)	Derive an expression for miller effect induced input and output capacitance for an inverting amplifier	CO2	PO1	06
		UNIT - III			
4	a)	A class B power amplifier output stage is required to deliver an average power of 100W into a 16Ω load. The power supply should be 4V greater than the corresponding peak sine-wave output voltage. Determine the power supply voltage required (to the nearest volt in the appropriate direction), the peak current from each supply, the total supply power, and the power conversion efficiency. Also determine the maximum possible power dissipation in each transistor for a sinewave input.	CO3	PO2	10
	b)	With a neat circuit diagram, explain the working of class B push pull power amplifier	CO1	-	06
	c)	Calculate the total harmonic distortion for an output signal having fundamental amplitude of 2.5V, second harmonic amplitude of 0.25V, third harmonic amplitude of 0.1V and fourth harmonic amplitude of 0.05V.	CO2	PO1	04
		UNIT - IV			
5	a)	The NMOS transistors in the circuit of Fig. 5 have $V_t = 1$ V, $\mu_n C_{ox} = 120 \mu\text{A}/\text{V}^2$, $\lambda = 0$, and $L_1 = L_2 = 1 \mu\text{m}$. Find the required values of gate width for each of Q_1 and Q_2 , and the value of R , to obtain the voltage and current values indicated.	CO3	PO2	10
		Figure 5			
	b)	Derive an expression for the drain current of NMOS transistor operating in (i) Triode region and (ii) Saturation region	CO2	PO1	10
		UNIT - V			
6	a)	Derive an expression for transconductance of the NMOS transistor and show that the transconductance $gm = \frac{2ID}{2Vov}$	CO2	PO1	10
	b)	Derive the terminal parameters for the amplifier circuit which does not produce phase reversal at the output	CO3	PO2	10

OR					
7	a)	Derive an expression for i) input impedance ii)output impedance iii)voltage gain and overall voltage gain for a common source amplifier with source resistance	CO2	PO1	10
	b)	Identify the circuit shown in the figure 9, explain its significance in biasing the MOS amplifier	CO3	PO2	10

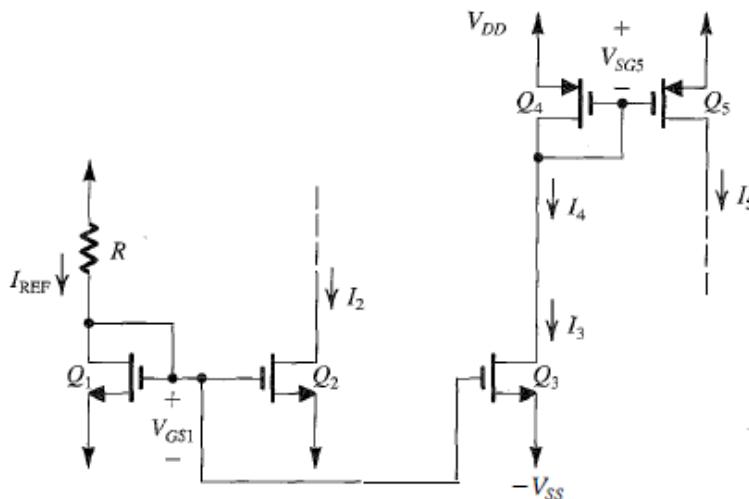


Figure 9
