

B.M.S. College of Engineering, Bengaluru-560019

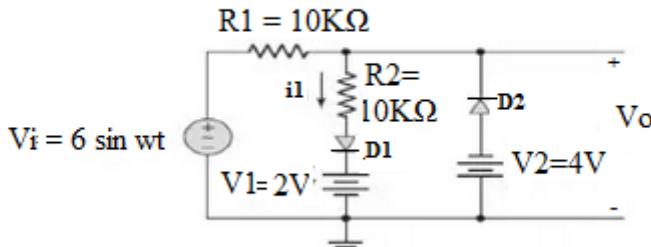
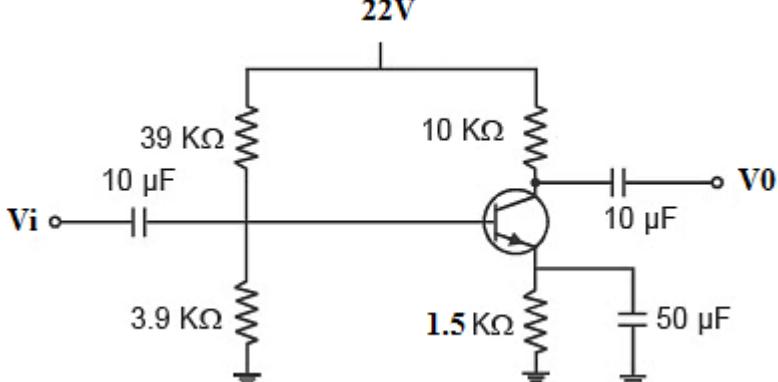
Autonomous Institute Affiliated to VTU

April 2024 Semester End Main Examinations

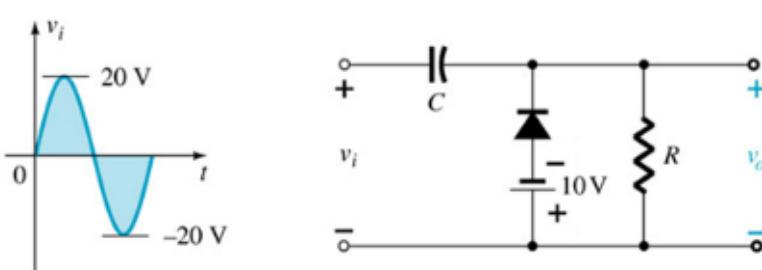
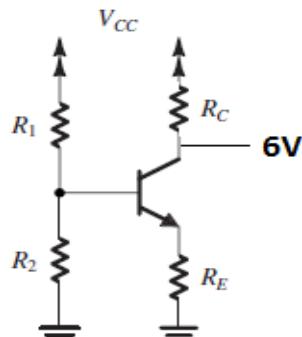
Programme: B.E.

Branch: Electronics and Communication Engineering

Course Code: 23EC3PCAEC



Course: Analog Electronic Circuits

Semester: III



Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Find the output of the parallel based clipper shown in Fig 1a. Assume V_g and $r_f=0$ for the diodes. Illustrate the same with input and output waveforms.</p> <p>Fig 1a</p>	CO2	PO1	06
	b)	<p>Determine the operating point (V_{CE}, I_c) for the circuit shown in Fig 1b. Assume β of the transistor to be 140.</p> <p>Fig 1b</p>	CO 2	PO1	06
	c)	<p>For a common emitter amplifier draw r_e model and derive expressions for voltage gain, input impedance, output impedance and current gain.</p>	CO 2	PO1	08
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

2	a)	<p>Determine the current gain, input impedance and voltage gain for a common emitter configuration with a load impedance of $2\text{K}\Omega$. Assume that the npn transistor used has $\beta=120$ and emitter current of 3.2mA. Let $r_0=\infty\Omega$.</p>	CO 2	PO1	06
	b)	<p>Consider the clamping circuit shown in Fig 2b and plot the output waveform. Assume the diode is ideal.</p>	CO 2	PO1	06
	c)	<p>Design the bias network of the amplifier shown in Fig. 2c to establish a current $I_E = 1 \text{ mA}$ using a power supply $V_{CC} = +12 \text{ V}$. The transistor is specified to have a nominal $\beta = 100$. Allocate one-third of the supply voltage to the voltage drop across R_2 and $I_E=1\text{mA}$.</p>	CO 4	PO3	08
		UNIT - II			
3	a)	<p>Determine the Voltage gain V_0/V_i, V_0/V_s and lower cutoff frequency for the circuit shown in Fig 3a. Assume $C_1= 10\mu\text{F}$, $C_E= 20 \mu\text{F}$, $C_2= 1 \mu\text{F}$, $R_s= 1\text{K}\Omega$, $R_1= 40 \text{ K}\Omega$, $R_2=10 \text{ K}\Omega$, $R_E=2 \text{ K}\Omega$, $R_C=4 \text{ K}\Omega$, $R_L=2.2 \text{ K}\Omega$, $\beta=100$, $V_{cc}=20\text{V}$, $r_0=\infty\Omega$.</p>	CO 2	PO1	10

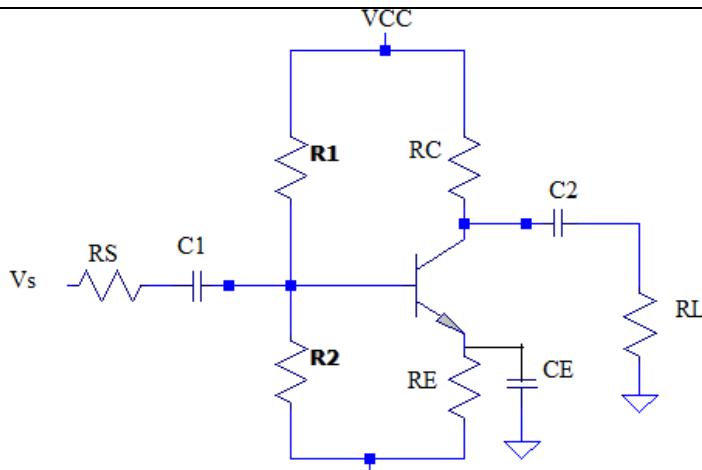


Fig 3a

b) An amplifier has a gain A , input impedance R_i and output impedance R_o . Derive the expression for input and output impedance when a voltage series negative feedback is provided to the amplifier with a feedback factor β .

UNIT - III

4 a) For a series fed class A power amplifier prove that maximum efficiency is 25%.

b) For a class B amplifier using a supply of $V_{cc}=30V$ and driving a load of 16Ω , find the maximum input power, output power and transistor dissipation.

c) Analyse the working of a transformer coupled class B power amplifier and also the drawbacks of the same.

UNIT - IV

5 a) With suitable figures deduce I_d - V_{ds} relationship in linear and in saturation region

b) With neat sketches explain the device structure and operation of NMOSFET for various conditions of V_{gs} and V_{ds} .

UNIT - V

6 a) Analyse the working of a common source amplifier with degeneration resistance and arrive at the expressions for voltage gain and output impedance of the amplifier.

b) Derive an expression for output impedance of Wilson mirror using MOSFETS

OR

7 a) Analyse a Common Gate amplifier with resistive load. Obtain the expression for small signal voltage gain. Draw the small signal equivalent circuit and obtain the expressions.

b) Deduce relevant expression for voltage gain of a source follower with a small signal model.
